当前位置:
X-MOL 学术
›
ACS Appl. Nano Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Scanning Tunneling Microscopy Investigation of Synaptic Behavior in AgInS2 Quantum Dots: Effect of Ion Transport in Neuromorphic Applications
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2024-03-26 , DOI: 10.1021/acsanm.3c06272
Atanu Betal 1 , Anupam Chetia 1 , Jayanta Bera 1 , Dibyajyoti Saikia 1 , Ashish Sharma 2, 3 , Arup K. Rath 2, 3 , Satyajit Sahu 1
ACS Applied Nano Materials ( IF 5.3 ) Pub Date : 2024-03-26 , DOI: 10.1021/acsanm.3c06272
Atanu Betal 1 , Anupam Chetia 1 , Jayanta Bera 1 , Dibyajyoti Saikia 1 , Ashish Sharma 2, 3 , Arup K. Rath 2, 3 , Satyajit Sahu 1
Affiliation
![]() |
Scanning tunneling microscopy (STM) is a powerful technique for investigating the nanoscale properties of functional materials. Additionally, scanning tunneling spectroscopy (STS) facilitates the determination of the local density of states (LDOS) within the material. In this study, we present an exploration of the resistive switching (RS) properties and neuromorphic computing capabilities of individual AgInS2 quantum dots, utilizing STM and STS techniques. By examining the material’s bandgap and its temperature dependence, we uncover a nonlinear variation below the Debye temperature and a linear trend at higher temperatures. Moreover, STS measurements demonstrate changes in the conducting states induced by localized pulses, further confirming the unique characteristics of the quantum dots. The experimental devices constructed by using these quantum dots effectively replicate the RS properties observed at the nanoscale. To assess the neuromorphic application of the devices, pulse transient measurements simulating the learning and forgetting processes were conducted. The gradual set and reset processes successfully mimic the information retention and erasure capabilities essential for neuromorphic computing. Notably, the resistive switching mechanism in these devices is attributed to localized ionic transport, which highlights the significant involvement of ionic species in the observed RS behavior. The outcomes of this study contribute to the fundamental understanding of RS properties in single AgInS2 quantum dots and offer valuable insights into their potential applications in neuromorphic computing.
中文翻译:
AgInS2 量子点突触行为的扫描隧道显微镜研究:神经形态应用中离子传输的影响
扫描隧道显微镜 (STM) 是研究功能材料纳米级特性的强大技术。此外,扫描隧道光谱 (STS) 有助于确定材料内的局域态密度 (LDOS)。在这项研究中,我们利用 STM 和 STS 技术探索了单个 AgInS 2量子点的电阻开关 (RS) 特性和神经形态计算能力。通过检查材料的带隙及其温度依赖性,我们发现了德拜温度以下的非线性变化和较高温度下的线性趋势。此外,STS 测量证明了局域脉冲引起的导电状态的变化,进一步证实了量子点的独特特性。使用这些量子点构建的实验装置有效地复制了在纳米尺度上观察到的RS特性。为了评估设备的神经形态应用,进行了模拟学习和遗忘过程的脉冲瞬态测量。逐步设置和重置过程成功地模仿了神经形态计算所必需的信息保留和擦除功能。值得注意的是,这些器件中的电阻切换机制归因于局部离子传输,这凸显了离子物种在观察到的 RS 行为中的重要参与。这项研究的结果有助于从根本上理解单个 AgInS 2量子点的 RS 特性,并为其在神经形态计算中的潜在应用提供了宝贵的见解。
更新日期:2024-03-26
中文翻译:

AgInS2 量子点突触行为的扫描隧道显微镜研究:神经形态应用中离子传输的影响
扫描隧道显微镜 (STM) 是研究功能材料纳米级特性的强大技术。此外,扫描隧道光谱 (STS) 有助于确定材料内的局域态密度 (LDOS)。在这项研究中,我们利用 STM 和 STS 技术探索了单个 AgInS 2量子点的电阻开关 (RS) 特性和神经形态计算能力。通过检查材料的带隙及其温度依赖性,我们发现了德拜温度以下的非线性变化和较高温度下的线性趋势。此外,STS 测量证明了局域脉冲引起的导电状态的变化,进一步证实了量子点的独特特性。使用这些量子点构建的实验装置有效地复制了在纳米尺度上观察到的RS特性。为了评估设备的神经形态应用,进行了模拟学习和遗忘过程的脉冲瞬态测量。逐步设置和重置过程成功地模仿了神经形态计算所必需的信息保留和擦除功能。值得注意的是,这些器件中的电阻切换机制归因于局部离子传输,这凸显了离子物种在观察到的 RS 行为中的重要参与。这项研究的结果有助于从根本上理解单个 AgInS 2量子点的 RS 特性,并为其在神经形态计算中的潜在应用提供了宝贵的见解。