当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Crystal-Phase and Surface-Structure Engineering of Bi2O3 for Enhanced Electrochemical N2 Fixation to NH3
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-03-29 , DOI: 10.1021/acsami.4c00162 Pengju Guo 1 , Fengxiang Yin 1, 2 , Jie Zhang 2, 3 , Biaohua Chen 1 , Ziyang Ni 1 , Liuliu Shi 1 , Mengyan Han 1 , Zumai Wu 1 , Guoru Li 1, 2
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-03-29 , DOI: 10.1021/acsami.4c00162 Pengju Guo 1 , Fengxiang Yin 1, 2 , Jie Zhang 2, 3 , Biaohua Chen 1 , Ziyang Ni 1 , Liuliu Shi 1 , Mengyan Han 1 , Zumai Wu 1 , Guoru Li 1, 2
Affiliation
The nitrogen reduction reaction (NRR) for ammonia synthesis is hindered by weak N2 adsorption/activation abilities and the hydrogen evolution reaction (HER). In this study, αBi2O3 (monoclinic) and βBi2O3 (tetragonal) were first synthesized by calcination at different temperatures. Experiments and calculations revealed the effects of Bi2O3 with different crystal phases on N2 adsorption/activation abilities and HER. Then, αBi2O3-x and βBi2O3-x series catalysts with surface oxygen vacancies (OVs) and Bi0 active sites were synthesized through the partial in situ reduction method. The results demonstrate the following: (I) Tetragonal βBi2O3 can better adsorb N2 and cleave the N≡N bond, thereby obtaining a lower NRR rate-limiting energy barrier (*N≡N → *N≡N–H, 0.51 eV). Meanwhile, βBi2O3 can effectively suppress HER by limiting proton adsorption (H+ + e– → *H, 0.54 eV). Therefore, βBi2O3-x series catalysts exhibit higher NH3 yield and FE than αBi2O3-x. Meanwhile, in situ FTIR further confirms that βBi2O3 could better adsorb/activate N2, and the NRR distal mechanism occurs on the Bi2O3 surface. (II) The introduction of NaBH4 promotes the conversion of part of Bi3+ on the Bi2O3 surface into Bi0 and releases OVs. The additional active sites (OVs and Bi0) enhance the overall catalyst’s adsorption/activation capacity for N2, further increasing the NH3 yield and FE. Meanwhile, semimetal Bi0 can effectively limit electron accessibility, thereby inhibiting the combination of charges and adsorbed protons, reducing the HER reaction and improving the FE of NRR. Therefore, the introduction of NaBH4 effectively improved the NH3 yield and FE of the αBi2O3-x and βBi2O3-x series catalysts. After optimization, the βBi2O3-0.6 catalyst has the best NRR performance (NH3 yield: 51.36 μg h–1 mg–1cat.; FE: 38.67%), which is superior to the majority of bismuth-based NRR catalysts. This work not only studies the effects of Bi2O3 with different crystal phases on N2 and HER reaction but also effectively regulates the active components of Bi2O3 surface, thereby realizing efficient NRR to NH3 reaction, which provide valuable insights for the rational design of Bi-based NRR electrocatalysts.
中文翻译:
Bi2O3 的晶相和表面结构工程增强 N2 电化学固定到 NH3
用于氨合成的氮还原反应(NRR)受到弱N 2吸附/活化能力和析氢反应(HER)的阻碍。在本研究中,首先通过在不同温度下煅烧合成了αBi 2 O 3 (单斜晶系)和βBi 2 O 3 (四方晶系)。实验和计算揭示了不同晶相的Bi 2 O 3对N 2吸附/活化能力和HER的影响。然后,通过部分原位还原方法合成了具有表面氧空位(OV)和Bi 0活性位点的αBi 2 O 3 - x和βBi 2 O 3 - x系列催化剂。结果表明:(I)四方晶系βBi 2 O 3可以更好地吸附N 2并裂解NeqN键,从而获得较低的NRR限速能垒(*NeqN→*NeqN-H, 0.51 eV)。同时,βBi 2 O 3可以通过限制质子吸附来有效抑制HER(H + + e – → *H,0.54 eV)。因此,βBi 2 O 3 - x系列催化剂比αBi 2 O 3 - x表现出更高的NH 3产率和FE。同时,原位FTIR进一步证实βBi 2 O 3可以更好地吸附/激活N 2 ,并且NRR远端机制发生在Bi 2 O 3表面。 (II)NaBH 4的引入促进Bi 2 O 3表面的部分Bi 3+转化为Bi 0并释放OV。额外的活性位点(OV和Bi 0 )增强了催化剂对N 2的整体吸附/活化能力,进一步提高了NH 3产率和FE。同时,半金属Bi 0可以有效限制电子的可达性,从而抑制电荷与吸附质子的结合,减少HER反应,提高NRR的FE。因此,NaBH 4的引入有效提高了αBi 2 O 3 - x和βBi 2 O 3 - x系列催化剂的NH 3产率和FE。优化后,βBi 2 O 3 -0.6催化剂具有最佳的NRR性能(NH 3产率:51.36 μg h –1 mg –1 cat. ;FE:38.67%),优于大多数铋基NRR催化剂。 。该工作不仅研究了不同晶相的Bi 2 O 3对N 2和HER反应的影响,而且有效调控了Bi 2 O 3表面的活性组分,从而实现了高效的NRR到NH 3反应,为N 2 和HER反应的研究提供了有价值的见解。 Bi基NRR电催化剂的合理设计。
更新日期:2024-03-29
中文翻译:
Bi2O3 的晶相和表面结构工程增强 N2 电化学固定到 NH3
用于氨合成的氮还原反应(NRR)受到弱N 2吸附/活化能力和析氢反应(HER)的阻碍。在本研究中,首先通过在不同温度下煅烧合成了αBi 2 O 3 (单斜晶系)和βBi 2 O 3 (四方晶系)。实验和计算揭示了不同晶相的Bi 2 O 3对N 2吸附/活化能力和HER的影响。然后,通过部分原位还原方法合成了具有表面氧空位(OV)和Bi 0活性位点的αBi 2 O 3 - x和βBi 2 O 3 - x系列催化剂。结果表明:(I)四方晶系βBi 2 O 3可以更好地吸附N 2并裂解NeqN键,从而获得较低的NRR限速能垒(*NeqN→*NeqN-H, 0.51 eV)。同时,βBi 2 O 3可以通过限制质子吸附来有效抑制HER(H + + e – → *H,0.54 eV)。因此,βBi 2 O 3 - x系列催化剂比αBi 2 O 3 - x表现出更高的NH 3产率和FE。同时,原位FTIR进一步证实βBi 2 O 3可以更好地吸附/激活N 2 ,并且NRR远端机制发生在Bi 2 O 3表面。 (II)NaBH 4的引入促进Bi 2 O 3表面的部分Bi 3+转化为Bi 0并释放OV。额外的活性位点(OV和Bi 0 )增强了催化剂对N 2的整体吸附/活化能力,进一步提高了NH 3产率和FE。同时,半金属Bi 0可以有效限制电子的可达性,从而抑制电荷与吸附质子的结合,减少HER反应,提高NRR的FE。因此,NaBH 4的引入有效提高了αBi 2 O 3 - x和βBi 2 O 3 - x系列催化剂的NH 3产率和FE。优化后,βBi 2 O 3 -0.6催化剂具有最佳的NRR性能(NH 3产率:51.36 μg h –1 mg –1 cat. ;FE:38.67%),优于大多数铋基NRR催化剂。 。该工作不仅研究了不同晶相的Bi 2 O 3对N 2和HER反应的影响,而且有效调控了Bi 2 O 3表面的活性组分,从而实现了高效的NRR到NH 3反应,为N 2 和HER反应的研究提供了有价值的见解。 Bi基NRR电催化剂的合理设计。