当前位置:
X-MOL 学术
›
J. Phys. Chem. B
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enhancing Charge Transport Using Boron and Nitrogen Substitutions into Triphenylene-Based Discotic Liquid Crystals
The Journal of Physical Chemistry B ( IF 2.8 ) Pub Date : 2024-03-27 , DOI: 10.1021/acs.jpcb.3c05825 Paul A Brown 1 , Jakub Kołacz 1 , Christopher M Spillmann 1
The Journal of Physical Chemistry B ( IF 2.8 ) Pub Date : 2024-03-27 , DOI: 10.1021/acs.jpcb.3c05825 Paul A Brown 1 , Jakub Kołacz 1 , Christopher M Spillmann 1
Affiliation
The substitution of p-block heteroatoms into polyaromatic hydrocarbons offers the potential for introducing enhanced molecular properties and advancing material development for electro-optical applications. Using density functional theory, we characterize the substitution of boron and nitrogen atoms into a 2,3,6,7,10,11-hexakis(hexathiol)triphenylene (TTP) core, a precursor for a material with a discotic liquid crystal phase, to determine the strength of exciton dissociation and the influence doping has on the formation of a heterojunction with graphene. The substitution of nitrogen and boron into the TTP motif enables tunability of both electron and hole coupling between hetero- and homodyads. The coupling is found to far exceed that of TTP and varied transport behavior with different combinations of doped cores of nitrogen-TTP and boron-TTP is reported. Heterodyads of nitrogen-TTP with boron-TTP appear to be ambipolar in electron/hole coupling, whereas heterodyads of boron- or nitrogen-TTP with TTP form strong electron coupling dyads and homodyads of nitrogen-TTP and boron-TTP form strong hole coupling. Finally, we describe the heterojunction of nitrogen- or boron-TTP with monolayer graphene and observe Ohmic contacts with large hole transport barriers. The presence of induced dipoles occurs at the interface in all heterojunctions, suggesting the possibility of tuning the junction with external potentials and improving exciton dissociation.
中文翻译:
利用硼和氮取代苯并菲基盘状液晶来增强电荷传输
将 p 区杂原子取代为聚芳烃,有可能引入增强的分子特性并推进电光应用材料的开发。利用密度泛函理论,我们描述了硼和氮原子在 2,3,6,7,10,11-六(六硫醇)苯并菲 (TTP) 核中的取代情况,该核是具有盘状液晶相的材料的前体,确定激子解离的强度以及掺杂对石墨烯异质结形成的影响。 TTP 基序中氮和硼的取代使得异源和同源之间电子和空穴耦合的可调性。发现耦合远远超过了 TTP,并且报道了氮-TTP 和硼-TTP 掺杂核的不同组合的不同传输行为。氮-TTP与硼-TTP的异源体在电子/空穴耦合中表现出双极性,而硼-或氮-TTP与TTP的异源体形成强电子耦合对,而氮-TTP和硼-TTP的同源体形成强空穴耦合。最后,我们描述了氮或硼 TTP 与单层石墨烯的异质结,并观察了与大空穴传输势垒的欧姆接触。所有异质结的界面处都存在诱导偶极子,这表明可以通过外部电势调节结并改善激子解离。
更新日期:2024-03-27
中文翻译:
利用硼和氮取代苯并菲基盘状液晶来增强电荷传输
将 p 区杂原子取代为聚芳烃,有可能引入增强的分子特性并推进电光应用材料的开发。利用密度泛函理论,我们描述了硼和氮原子在 2,3,6,7,10,11-六(六硫醇)苯并菲 (TTP) 核中的取代情况,该核是具有盘状液晶相的材料的前体,确定激子解离的强度以及掺杂对石墨烯异质结形成的影响。 TTP 基序中氮和硼的取代使得异源和同源之间电子和空穴耦合的可调性。发现耦合远远超过了 TTP,并且报道了氮-TTP 和硼-TTP 掺杂核的不同组合的不同传输行为。氮-TTP与硼-TTP的异源体在电子/空穴耦合中表现出双极性,而硼-或氮-TTP与TTP的异源体形成强电子耦合对,而氮-TTP和硼-TTP的同源体形成强空穴耦合。最后,我们描述了氮或硼 TTP 与单层石墨烯的异质结,并观察了与大空穴传输势垒的欧姆接触。所有异质结的界面处都存在诱导偶极子,这表明可以通过外部电势调节结并改善激子解离。