当前位置: X-MOL 学术Rep. Prog. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
When physics meets chemistry at the dynamic glass transition
Reports on Progress in Physics ( IF 19.0 ) Pub Date : 2024-03-04 , DOI: 10.1088/1361-6633/ad2b9c
Haibao Lu

Can the laws of physics be unified? One of the most puzzling challenges is to reconcile physics and chemistry, where molecular physics meets condensed-matter physics, resulting from the dynamic fluctuation and scaling effect of glassy matter at the glass transition temperature. The pioneer of condensed-matter physics, Nobel Prize-winning physicist Philip Warren Anderson referred to this gap as the deepest and most interesting unsolved problem in condensed-matter physics in 1995. In 2005, Science, in its 125th anniversary publication, highlighted that the question of ‘what is the nature of glassy state?’ was one of the greatest scientific conundrums for the next quarter century. However, the nature of the glassy state and its connection to the glass transition have not been fully understood owing to the interdisciplinary complexity of physics and chemistry, governed by physical laws at the condensed-matter and molecular scales, respectively. Therefore, the study of glass transition is essential to explore the working principles of the scaling effects and dynamic fluctuations in glassy matter and to further reconcile the interdisciplinary complexity of physics and chemistry. Initially, this paper proposes a thermodynamic order-to-disorder free-energy equation for microphase separation to formulate the dynamic equilibria and fluctuations, which originate from the interplay of the phase and microphase separations during glass transition. Then, the Adam–Gibbs domain model is employed to explore the cooperative dynamics and molecular entanglement in glassy matter. It relies on the concept of transition probability in pairing, where each domain contains e + 1 segments, in which approximately 3.718 segments cooperatively relax in a domain at the glass transition temperature. This model enables the theoretical modeling and validation of a previously unverified statement, suggesting that 50–100 individual monomers would relax synchronously at glass transition temperature. Finally, the constant free-volume fraction of 2.48% is phenomenologically obtained to achieve a condensed constant (C) of C= 0.12(1−γ) = 1.501 × 10−11 J·mol−1·K−1, where γ represents the superposition factor of free volume and is characterised using the cumulative Poisson distribution function, at the condensed-matter scale, analogous to the Boltzmann constant (kB) and gas constant (R).

中文翻译:

当物理在动态玻璃化转变中遇到化学

物理定律能否统一?最令人费解的挑战之一是协调物理和化学,其中分子物理与凝聚态物理相遇,这是由于玻璃态物质在玻璃化转变温度下的动态涨落和缩放效应造成的。凝聚态物理学的先驱、诺贝尔奖获得者、物理学家菲利普·沃伦·安德森 (Philip Warren Anderson) 在 1995 年将这一差距称为凝聚态物理学中最深刻、最有趣的未解决问题。2005 年,《科学》杂志在其 125 周年纪念刊物中强调, “玻璃态的本质是什么?”的问题是接下来四分之一世纪最大的科学难题之一。然而,由于物理和化学的跨学科复杂性(分别受凝聚态和分子尺度的物理定律支配),玻璃态的性质及其与玻璃化转变的联系尚未得到充分理解。因此,玻璃化转变的研究对于探索玻璃态物质的标度效应和动态涨落的工作原理,进一步协调物理和化学的跨学科复杂性至关重要。首先,本文提出了微相分离的热力学有序到无序自由能方程,以公式化源自玻璃化转变过程中相分离和微相分离的相互作用的动态平衡和波动。然后,采用 Adam-Gibbs 域模型来探索玻璃物质中的协作动力学和分子纠缠。它依赖于配对中转变概率的概念,其中每个域包含 e + 1 个片段,其中大约 3.718 个片段在玻璃化转变温度下在一个域中协同弛豫。该模型能够对先前未经验证的陈述进行理论建模和验证,表明 50-100 个单体会在玻璃化转变温度下同步松弛。最后,唯象地得到恒定的自由体积分数2.48%,从而获得凝聚常数(C) C= 0.12(1−γ) = 1.501 × 10−11 J·mol−1·K−1,其中γ表示自由体积的叠加因子,并使用凝聚态物质尺度的累积泊松分布函数来表征,类似于玻尔兹曼常数 (kB) 和气体常数 (R)。
更新日期:2024-03-04
down
wechat
bug