当前位置:
X-MOL 学术
›
ChemSusChem
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Synthesis of 9‐Oxononanoic Acid, a Precursor for Biopolymers
ChemSusChem ( IF 7.5 ) Pub Date : 2013-08-09 , DOI: 10.1002/cssc.201300183 Konrad B. Otte , Marko Kirtz , Bettina M. Nestl , Bernhard Hauer
ChemSusChem ( IF 7.5 ) Pub Date : 2013-08-09 , DOI: 10.1002/cssc.201300183 Konrad B. Otte , Marko Kirtz , Bettina M. Nestl , Bernhard Hauer
Polymers based on renewable resources have become increasingly important. The natural functionalization of fats and oils enables an easy access to interesting monomeric building blocks, which in turn transform the derivative biopolymers into high‐performance materials. Unfortunately, interesting building blocks of medium‐chain length are difficult to obtain by traditional chemical means. Herein, a biotechnological pathway is established that could provide an environmentally suitable and sustainable alternative. A multiple enzyme two‐step one‐pot process efficiently catalyzed by a coupled 9S‐lipoxygenase (St‐LOX1, Solanum tuberosum) and 9/13‐hydroperoxide lyase (Cm‐9/13HPL, Cucumis melo) cascade reaction is proposed as a potential route for the conversion of linoleic acid into 9‐oxononanoic acid, which is a precursor for biopolymers. Lipoxygenase catalyzes the insertion of oxygen into linoleic acid through a radical mechanism to give 9S‐hydroperoxy‐octadecadienoic acid (9S‐HPODE) as a cascade intermediate, which is subsequently cleaved by the action of Cm‐9/13HPL. This one‐pot process afforded a yield of 73 % combined with high selectivity. The best reaction performance was achieved when lipoxygenase and hydroperoxide lyase were applied in a successive rather than a simultaneous manner. Green leaf volatiles, which are desired flavor and fragrance products, are formed as by‐products in this reaction cascade. Furthermore, we have investigated the enantioselectivity of 9/13‐HPLs, which exhibited a strong preference for 9S‐HPODE over 9R‐HPODE.
中文翻译:
生物聚合物的前体9-氧代壬酸的合成
基于可再生资源的聚合物变得越来越重要。油脂的天然功能化使得可以轻松获得有趣的单体结构单元,从而将衍生的生物聚合物转变为高性能材料。不幸的是,用传统的化学方法很难获得有趣的中链长度的结构单元。在本文中,建立了一种生物技术途径,可以提供一种适合环境且可持续的替代方法。一种多酶两步一锅法通过有效地催化耦合9小号脂氧合酶(圣-LOX1,马铃薯)和9/13-氢过氧化物裂合酶(厘米-9 / 13HPL,甜瓜)级联反应被认为是亚油酸转化为9-氧代壬酸的潜在途径,后者是生物聚合物的前体。脂氧合酶通过自由基机理催化氧插入亚油酸中,从而得到9 S-氢过氧-十八碳二烯酸(9 S- HPODE),为级联中间体,随后被Cm作用裂解。‐9 / 13HPL。这种一锅法工艺的收率高达73%,同时具有很高的选择性。当以连续而不是同时的方式施加脂氧合酶和氢过氧化物裂解酶时,可获得最佳的反应性能。绿叶挥发物是所需的风味和香味产品,在此反应级联反应中作为副产物形成。此外,我们研究了9 / 13-HPL的对映选择性,相对于9 R -HPODE,9 / 13-HPLs对9 S -HPODE的偏爱性强。
更新日期:2013-08-09
中文翻译:
生物聚合物的前体9-氧代壬酸的合成
基于可再生资源的聚合物变得越来越重要。油脂的天然功能化使得可以轻松获得有趣的单体结构单元,从而将衍生的生物聚合物转变为高性能材料。不幸的是,用传统的化学方法很难获得有趣的中链长度的结构单元。在本文中,建立了一种生物技术途径,可以提供一种适合环境且可持续的替代方法。一种多酶两步一锅法通过有效地催化耦合9小号脂氧合酶(圣-LOX1,马铃薯)和9/13-氢过氧化物裂合酶(厘米-9 / 13HPL,甜瓜)级联反应被认为是亚油酸转化为9-氧代壬酸的潜在途径,后者是生物聚合物的前体。脂氧合酶通过自由基机理催化氧插入亚油酸中,从而得到9 S-氢过氧-十八碳二烯酸(9 S- HPODE),为级联中间体,随后被Cm作用裂解。‐9 / 13HPL。这种一锅法工艺的收率高达73%,同时具有很高的选择性。当以连续而不是同时的方式施加脂氧合酶和氢过氧化物裂解酶时,可获得最佳的反应性能。绿叶挥发物是所需的风味和香味产品,在此反应级联反应中作为副产物形成。此外,我们研究了9 / 13-HPL的对映选择性,相对于9 R -HPODE,9 / 13-HPLs对9 S -HPODE的偏爱性强。