当前位置: X-MOL 学术Crit. Care Med. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Machine Learning Identifies Higher Survival Profile In Extracorporeal Cardiopulmonary Resuscitation.
Critical Care Medicine ( IF 7.7 ) Pub Date : 2024-03-27 , DOI: 10.1097/ccm.0000000000006261
Ruben Crespo-Diaz 1 , Julian Wolfson 2 , Demetris Yannopoulos 3 , Jason A Bartos 3
Affiliation  

Extracorporeal cardiopulmonary resuscitation (ECPR) has been shown to improve neurologically favorable survival in patients with refractory out-of-hospital cardiac arrest (OHCA) caused by shockable rhythms. Further refinement of patient selection is needed to focus this resource-intensive therapy on those patients likely to benefit. This study sought to create a selection model using machine learning (ML) tools for refractory cardiac arrest patients undergoing ECPR.

中文翻译:


机器学习确定了体外心肺复苏中更高的生存率。



体外心肺复苏 (ECPR) 已被证明可以改善由可电击节律引起的难治性院外心脏骤停 (OHCA) 患者的神经系统生存率。需要进一步细化患者选择,将这种资源密集型治疗集中于那些可能受益的患者。本研究试图使用机器学习 (ML) 工具为接受 ECPR 的难治性心脏骤停患者创建一个选择模型。
更新日期:2024-03-27
down
wechat
bug