当前位置:
X-MOL 学术
›
Fract. Calc. Appl. Anal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Global existence for three-dimensional time-fractional Boussinesq-Coriolis equations
Fractional Calculus and Applied Analysis ( IF 2.5 ) Pub Date : 2024-03-26 , DOI: 10.1007/s13540-024-00272-6
Jinyi Sun , Chunlan Liu , Minghua Yang
中文翻译:
三维时间分数型 Boussinesq-Coriolis 方程的全局存在性
更新日期:2024-03-26
Fractional Calculus and Applied Analysis ( IF 2.5 ) Pub Date : 2024-03-26 , DOI: 10.1007/s13540-024-00272-6
Jinyi Sun , Chunlan Liu , Minghua Yang
The paper is concerned with the three-dimensional Boussinesq-Coriolis equations with Caputo time-fractional derivatives. Specifically, by striking new balances between the dispersion effects of the Coriolis force and the smoothing effects of the Laplacian dissipation involving with a time-fractional evolution mechanism, we obtain the global existence of mild solutions to Cauchy problem of three-dimensional time-fractional Boussinesq-Coriolis equations in Besov spaces.
中文翻译:
三维时间分数型 Boussinesq-Coriolis 方程的全局存在性
本文涉及具有 Caputo 时间分数阶导数的三维 Boussinesq-Coriolis 方程。具体来说,通过在涉及时间分数演化机制的科里奥利力的色散效应和拉普拉斯耗散的平滑效应之间取得新的平衡,我们获得了三维时间分数布辛涅斯克柯西问题的温和解的全局存在性-Besov 空间中的科里奥利方程。