当前位置:
X-MOL 学术
›
Photonics Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Photonic crystal nanolasers in polydimethylsiloxane thin film for sensing quantities leading to strain
Photonics Research ( IF 6.6 ) Pub Date : 2024-03-25 Tsan-Wen Lu, Kuang-Ming Lin, Zhen-Yu Wang, and Po-Tsung Lee
Photonics Research ( IF 6.6 ) Pub Date : 2024-03-25 Tsan-Wen Lu, Kuang-Ming Lin, Zhen-Yu Wang, and Po-Tsung Lee
We propose and realize a 1D photonic crystal nanocavity laser embedded in a polydimethylsiloxane (PDMS) thin film. The nanolaser in PDMS exhibits a significant optical response to structural deformation. It can be attached to object surfaces or integrated into different configurations, enabling the detection of different quantities that induce strain in the film. In experiments, this nanolaser can detect temperature variations or micrometer-scale bending degrees by attaching it to a temperature-controllable or bendable plate, respectively. Moreover, we further utilize the film as a diaphragm of a chamber to demonstrate its potential as a highly sensitive pressure gauge and chemical sensor. By adjusting the thickness of the PDMS thin film and the position of the nanolaser, we experimentally achieved a minimum detectable gas pressure variation of 0.12 kPa and a sensing dynamic range of 46 dB. We also investigate the optical response of the nanolaser to the swelling of the PDMS thin film induced by different organic solvents in experiments. The experimental wavelength shift rates over time are proportional to different chemical vapors’ PDMS swelling ratios, which can be used to identify specific chemical vapors within the chamber that induce PDMS swelling. Based on the experimental results and the capability of reattaching to different objects or configurations, we believe that our PhC nanolaser demonstrated herein holds significant potential as a highly sensitive mechanical and chemical sensor.
中文翻译:
聚二甲基硅氧烷薄膜中的光子晶体纳米激光器用于传感导致应变的量
我们提出并实现了嵌入聚二甲基硅氧烷(PDMS)薄膜中的一维光子晶体纳米腔激光器。 PDMS 中的纳米激光器对结构变形表现出显着的光学响应。它可以附着在物体表面或集成到不同的配置中,从而能够检测引起薄膜应变的不同量。在实验中,这种纳米激光器可以通过将其分别连接到温度可控或可弯曲的板上来检测温度变化或微米级弯曲程度。此外,我们进一步利用该薄膜作为腔室的隔膜,以展示其作为高灵敏度压力计和化学传感器的潜力。通过调整PDMS薄膜的厚度和纳米激光器的位置,我们通过实验实现了0.12 kPa的最小可检测气压变化和46 dB的传感动态范围。我们还在实验中研究了纳米激光对不同有机溶剂引起的 PDMS 薄膜膨胀的光学响应。实验波长随时间的变化率与不同化学蒸气的 PDMS 溶胀率成正比,这可用于识别腔室内引起 PDMS 溶胀的特定化学蒸气。基于实验结果以及重新附着到不同物体或配置的能力,我们相信本文展示的 PhC 纳米激光器具有作为高灵敏度机械和化学传感器的巨大潜力。
更新日期:2024-03-27
中文翻译:
聚二甲基硅氧烷薄膜中的光子晶体纳米激光器用于传感导致应变的量
我们提出并实现了嵌入聚二甲基硅氧烷(PDMS)薄膜中的一维光子晶体纳米腔激光器。 PDMS 中的纳米激光器对结构变形表现出显着的光学响应。它可以附着在物体表面或集成到不同的配置中,从而能够检测引起薄膜应变的不同量。在实验中,这种纳米激光器可以通过将其分别连接到温度可控或可弯曲的板上来检测温度变化或微米级弯曲程度。此外,我们进一步利用该薄膜作为腔室的隔膜,以展示其作为高灵敏度压力计和化学传感器的潜力。通过调整PDMS薄膜的厚度和纳米激光器的位置,我们通过实验实现了0.12 kPa的最小可检测气压变化和46 dB的传感动态范围。我们还在实验中研究了纳米激光对不同有机溶剂引起的 PDMS 薄膜膨胀的光学响应。实验波长随时间的变化率与不同化学蒸气的 PDMS 溶胀率成正比,这可用于识别腔室内引起 PDMS 溶胀的特定化学蒸气。基于实验结果以及重新附着到不同物体或配置的能力,我们相信本文展示的 PhC 纳米激光器具有作为高灵敏度机械和化学传感器的巨大潜力。