当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
The Failure Mechanism of Micro Thermoelectric Devices under the Action of the Temperature Field
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-03-25 , DOI: 10.1021/acsami.4c00625 Jianan Lyu 1, 2 , Dongwang Yang 1 , Yutian Liu 1 , Junhao Li 1 , Zinan Zhang 1 , Zhenming Li 3 , Mingyang Liu 3 , Wei Liu 3 , Zhigang Ren 4 , Hongjing Liu 4 , Jinsong Wu 1, 2 , Xinfeng Tang 1 , Yonggao Yan 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-03-25 , DOI: 10.1021/acsami.4c00625 Jianan Lyu 1, 2 , Dongwang Yang 1 , Yutian Liu 1 , Junhao Li 1 , Zinan Zhang 1 , Zhenming Li 3 , Mingyang Liu 3 , Wei Liu 3 , Zhigang Ren 4 , Hongjing Liu 4 , Jinsong Wu 1, 2 , Xinfeng Tang 1 , Yonggao Yan 1
Affiliation
The micro thermoelectric device (m-TED) boasts features such as adjustable volume, straightforward structure, and precise, rapid temperature control, positioning it as the only current solution for managing the temperature of microelectronic systems. It is extensively utilized in 5G optical modules, laser lidars, and infrared detection. Nevertheless, as the size of the m-TED diminishes, the growing proportion of interface damages the device’s operational reliability, constraining the advancement of the m-TED. In this study, we used commercially available bismuth telluride materials to construct the m-TED. The device’s reliability was tested under various temperatures: −40, 85, 125, and 150 °C. By deconstructing and analyzing the devices that failed during the tests, we discovered that the primary cause of device failure was the degradation of the solder layer. Moreover, we demonstrated that encapsulating the device with polydimethylsiloxane (PDMS) could effectively delay the deterioration of its performance. This study sparks new insights into the service reliability of m-TEDs and paves the way for further optimizing device interface design and enhancing the device manufacturing process.
中文翻译:
温度场作用下微型热电器件的失效机理
微型热电器件(m-TED)具有体积可调、结构简单、温度控制精确、快速等特点,是目前微电子系统温度管理的唯一解决方案。广泛应用于5G光模块、激光雷达、红外检测等领域。然而,随着m-TED尺寸的减小,接口比例的增加损害了器件的运行可靠性,限制了m-TED的进步。在这项研究中,我们使用市售的碲化铋材料来构建 m-TED。该器件的可靠性在不同温度下进行了测试:-40、85、125 和 150 °C。通过对测试过程中失效的器件进行解构和分析,我们发现器件失效的主要原因是焊料层的退化。此外,我们证明用聚二甲基硅氧烷(PDMS)封装器件可以有效延缓其性能的恶化。这项研究激发了对 m-TED 服务可靠性的新见解,并为进一步优化设备接口设计和增强设备制造工艺铺平了道路。
更新日期:2024-03-25
中文翻译:
温度场作用下微型热电器件的失效机理
微型热电器件(m-TED)具有体积可调、结构简单、温度控制精确、快速等特点,是目前微电子系统温度管理的唯一解决方案。广泛应用于5G光模块、激光雷达、红外检测等领域。然而,随着m-TED尺寸的减小,接口比例的增加损害了器件的运行可靠性,限制了m-TED的进步。在这项研究中,我们使用市售的碲化铋材料来构建 m-TED。该器件的可靠性在不同温度下进行了测试:-40、85、125 和 150 °C。通过对测试过程中失效的器件进行解构和分析,我们发现器件失效的主要原因是焊料层的退化。此外,我们证明用聚二甲基硅氧烷(PDMS)封装器件可以有效延缓其性能的恶化。这项研究激发了对 m-TED 服务可靠性的新见解,并为进一步优化设备接口设计和增强设备制造工艺铺平了道路。