当前位置: X-MOL 学术Microsyst. Nanoeng. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Nanofabricated high turn-density spiral coils for on-chip electromagneto-optical conversion
Microsystems & Nanoengineering ( IF 7.3 ) Pub Date : 2024-03-25 , DOI: 10.1038/s41378-024-00674-9
Ilhan Bok 1, 2, 3 , Alireza Ashtiani 1 , Yash Gokhale 1 , Jack Phillips 1 , Tianxiang Zhu 1 , Aviad Hai 1, 2, 3
Affiliation  

Circuit-integrated electromagnets are fundamental building blocks for on-chip signal transduction, modulation, and tunability, with specific applications in environmental and biomedical micromagnetometry. A primary challenge for improving performance is pushing quality limitations while minimizing size and fabrication complexity and retaining spatial capabilities. Recent efforts have exploited highly involved three-dimensional synthesis, advanced insulation, and exotic material compositions. Here, we present a rapid nanofabrication process that employs electron beam dose control for high-turn-density diamond-embedded flat spiral coils; these coils achieve efficient on-chip electromagnetic-to-optical signal conversion. Our fabrication process relies on fast 12.3 s direct writing on standard poly(methyl methacrylate) as a basis for the metal lift-off process. Prototypes with 70 micrometer overall diameters and 49–470 nm interturn spacings with corresponding inductances of 12.3–12.8 nH are developed. We utilize optical micromagnetometry to demonstrate that magnetic field generation at the center of the structure effectively correlates with finite element modeling predictions. Further designs based on our process can be integrated with photolithography to broadly enable optical magnetic sensing and spin-based computation.



中文翻译:


用于片上电磁光转换的纳米制造高匝密度螺旋线圈



电路集成电磁体是片上信号传导、调制和可调性的基本构建模块,在环境和生物医学微磁力测量中具有特定应用。提高性能的主要挑战是突破质量限制,同时最小化尺寸和制造复杂性并保留空间能力。最近的努力已经开发了高度复杂的三维合成、先进的绝缘材料和奇异的材料成分。在这里,我们提出了一种快速纳米制造工艺,该工艺采用电子束剂量控制来控制高匝密度金刚石嵌入的扁平螺旋线圈;这些线圈实现了高效的片上电磁信号到光信号的转换。我们的制造工艺依赖于标准聚(甲基丙烯酸甲酯)上的快速 12.3 秒直接写入,作为金属剥离工艺的基础。开发出总直径为 70 微米、匝间间距为 49–470 nm 的原型,相应的电感为 12.3–12.8 nH。我们利用光学微磁力测量来证明结构中心的磁场生成与有限元建模预测有效相关。基于我们的工艺的进一步设计可以与光刻集成,以广泛实现光学磁传感和基于自旋的计算。

更新日期:2024-03-25
down
wechat
bug