当前位置: X-MOL 学术Solar RRL › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Unveiling and Overcoming Instabilities in Perovskite Solar Cells Induced by Atomic-Layer-Deposition Tin Oxide
Solar RRL ( IF 6.0 ) Pub Date : 2024-03-22 , DOI: 10.1002/solr.202301076
Zhuo Zheng 1, 2 , Zexu Xue 1 , Kai Zhao 1 , Yuanhang Yang 1 , Xueliang Zhu 1 , Hao Li 1 , Siyang Cheng 1 , Sheng Li 1, 2 , Ning Yan 1 , Zhiping Wang 1, 2
Affiliation  

Atomic layer deposition of tin oxide (ALD–SnOx) has emerged as a promising buffer/protection layer, often replacing bathocuproine (BCP) in applications such as semitransparent and tandem devices. However, the long-term stability and underlying degradation mechanisms of perovskite solar cells (PSC) incorporating ALD–SnOx remain elusive. Herein, the long-term stability of PSCs featuring an ALD–SnOx buffer layer is systematically investigated. Intriguingly, it is observed that cells with ALD–SnOx exhibit heightened susceptibility to severe degradation, surpassing even the degradation levels observed with BCP under humid conditions. Through an extensive analysis employing X-ray photoelectron spectroscopy and X-ray diffraction, it is unveiled that ALD–SnOx triggers a phase transition in the perovskite when exposed to moisture, transitioning from the black cubic phase to the yellow delta phase, despite the presence of a thin layer of fullerene between the SnOx and the perovskite. Replacing ALD–SnOx with ALD–AlOx as a buffer layer emerges as a transformative strategy, effectively bolstering the humidity and thermal stability of the cells, without affecting device efficiency. The optimized ALD–AlOx-buffered device exhibits a high efficiency of 24.61% and maintains 88% of its initial efficiency after maximum power point tracking under 1 sun illumination for 1350 h at 65 °C in ambient air when encapsulated.

中文翻译:

揭示并克服原子层沉积氧化锡引起的钙钛矿太阳能电池的不稳定性

氧化锡 (ALD–SnO x ) 的原子层沉积已成为一种有前途的缓冲/保护层,通常在半透明和串联器件等应用中取代浴铜灵 (BCP)。然而,结合 ALD-SnO x的钙钛矿太阳能电池(PSC)的长期稳定性和潜在的降解机制仍然难以捉摸。在此,系统地研究了具有 ALD-SnO x缓冲层的 PSC 的长期稳定性。有趣的是,我们观察到含有 ALD-SnO x的细胞对严重降解表现出更高的敏感性,甚至超过了在潮湿条件下用 BCP 观察到的降解水平。通过使用 X 射线光电子能谱和 X 射线衍射的广泛分析,发现 ALD-SnO x暴露于水分时会触发钙钛矿中的相变,从黑色立方相转变为黄色 δ 相,尽管SnO x和钙钛矿之间存在富勒烯薄层。用 ALD-AlO x代替ALD- SnO x作为缓冲层是一种变革策略,可以有效增强电池的湿度和热稳定性,而不影响器件效率。优化的 ALD-AlO x缓冲器件表现出 24.61% 的高效率,并且在封装后在 1 个太阳光照下、在 65 °C 环境空气中进行 1350 小时的最大功率点跟踪后,仍保持其初始效率的 88%。
更新日期:2024-03-22
down
wechat
bug