当前位置: X-MOL 学术Adv. Appl. Clifford Algebras › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
A Real Method for Solving Octonion Matrix Equation $$AXB=C$$ Based on Semi-tensor Product of Matrices
Advances in Applied Clifford Algebras ( IF 1.1 ) Pub Date : 2024-03-23 , DOI: 10.1007/s00006-024-01316-z
Xiaochen Liu , Ying Li , Wenxv Ding , Ruyu Tao

In this paper, the octonion matrix equation \(AXB=C\) is studied based on semi-tensor product of matrices. Firstly, we propose the left real element representation and the right real element representation of octonion. Then we obtain the expression of the least squares Hermitian solution to the octonion matrix equation \(AXB=C\) by combining these representations with \(\mathcal {H}\)-representation of the special matrices. In addition, we also put forward the equivalent condition of existence and general expression of the Hermitian solution to the octonion matrix equation \(AXB=C.\) Finally, the validity and stability of our method is verified by numerical experiments.



中文翻译:

基于矩阵半张量积求解八元矩阵方程$$AXB=C$$的实数方法

本文基于矩阵的半张量积研究了八元数矩阵方程\(AXB=C\) 。首先,我们提出八元数的左实元表示和右实元表示。然后,我们通过将这些表示与特殊矩阵的表示相结合,获得八元数矩阵方程\(AXB=C\)最小二乘埃尔米特解的表达式。此外,我们还提出了八元数矩阵方程\(AXB=C\)埃尔米特解的等价存在条件和一般表达式。最后,通过数值实验验证了该方法的有效性和稳定性。

更新日期:2024-03-23
down
wechat
bug