Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Enhanced Computational Study with Experimental Correlation on I–V Characteristics of Tantalum Oxide (TaOx) Memristor Devices in a 1T1R Configuration
Small ( IF 13.0 ) Pub Date : 2024-03-22 , DOI: 10.1002/smll.202310542
Sangwook Sihn 1, 2 , William L Chambers 3 , Minhaz Abedin 4 , Karsten Beckmann 4 , Nathaniel Cady 4 , Sabyasachi Ganguli 1 , Ajit K Roy 1
Small ( IF 13.0 ) Pub Date : 2024-03-22 , DOI: 10.1002/smll.202310542
Sangwook Sihn 1, 2 , William L Chambers 3 , Minhaz Abedin 4 , Karsten Beckmann 4 , Nathaniel Cady 4 , Sabyasachi Ganguli 1 , Ajit K Roy 1
Affiliation
![]() |
Memristors, non-volatile switching memory platform, has recently attracted significant interest, offering unique potential to enable the realization of human brain-like neuromorphic computing efficiency. Memristors also demonstrate excellent temperature tolerance, long-term durability, and high tunability with nanosecond pulses, making them highly attractive for neuromorphic computing applications. To better understand the material processing, microstructure, and property relationship of switching mechanisms in memristor devices, computational methodologies, and tools are developed to predict the I–V characteristics of memristor devices based on tantalum oxide (TaOx) resistive random-access memory (ReRAM) integrated with an n-channel metal–oxide–semiconductor (NMOS) transistor. A multiphysics model based on coupled partial differential equations for electrical and thermal transport phenomena is solved for the high- and low-resistance states during the formation, growth, and destruction of a conducting filament through SET and RESET stages. These stages effectively represent the migration of oxygen vacancies within an oxide exchange layer. A series of parametric studies and energy minimization calculations are conducted to determine probable ranges for key material and model parameters accounting for the experimental data. The computational model successfully predicted the measured I–V curves across various gate voltages applied to the NMOS transistor in the one transistor one resistance (1T1R) configuration.
中文翻译:
1T1R 配置中氧化钽 (TaOx) 忆阻器器件 I-V 特性的实验关联增强计算研究
忆阻器是一种非易失性开关存储器平台,最近引起了人们的极大兴趣,它为实现类似人脑的神经形态计算效率提供了独特的潜力。忆阻器还表现出出色的耐温性、长期耐用性以及纳秒脉冲的高可调性,这使得它们对于神经形态计算应用极具吸引力。为了更好地理解忆阻器器件中开关机制的材料加工、微观结构和属性关系,开发了计算方法和工具来预测基于氧化钽 (TaO x ) 电阻式随机存取存储器的忆阻器器件的I-V特性。 ReRAM)与 n 沟道金属氧化物半导体 (NMOS) 晶体管集成。基于电和热传输现象的耦合偏微分方程的多物理场模型可求解导电丝在 SET 和 RESET 阶段的形成、生长和破坏过程中的高阻和低阻状态。这些阶段有效地代表了氧化物交换层内氧空位的迁移。进行了一系列参数研究和能量最小化计算,以确定考虑实验数据的关键材料和模型参数的可能范围。计算模型成功预测了在单晶体管一电阻 (1T1R) 配置中施加到 NMOS 晶体管的各种栅极电压上测得的I-V曲线。
更新日期:2024-03-22
中文翻译:

1T1R 配置中氧化钽 (TaOx) 忆阻器器件 I-V 特性的实验关联增强计算研究
忆阻器是一种非易失性开关存储器平台,最近引起了人们的极大兴趣,它为实现类似人脑的神经形态计算效率提供了独特的潜力。忆阻器还表现出出色的耐温性、长期耐用性以及纳秒脉冲的高可调性,这使得它们对于神经形态计算应用极具吸引力。为了更好地理解忆阻器器件中开关机制的材料加工、微观结构和属性关系,开发了计算方法和工具来预测基于氧化钽 (TaO x ) 电阻式随机存取存储器的忆阻器器件的I-V特性。 ReRAM)与 n 沟道金属氧化物半导体 (NMOS) 晶体管集成。基于电和热传输现象的耦合偏微分方程的多物理场模型可求解导电丝在 SET 和 RESET 阶段的形成、生长和破坏过程中的高阻和低阻状态。这些阶段有效地代表了氧化物交换层内氧空位的迁移。进行了一系列参数研究和能量最小化计算,以确定考虑实验数据的关键材料和模型参数的可能范围。计算模型成功预测了在单晶体管一电阻 (1T1R) 配置中施加到 NMOS 晶体管的各种栅极电压上测得的I-V曲线。