当前位置:
X-MOL 学术
›
Adv. Energy Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Relocatable Hollow Multishelled Structure-Based Membrane Enables Dendrite-Free Lithium Deposition for Ultrastable Lithium Metal Batteries
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-03-19 , DOI: 10.1002/aenm.202400108 Peng Wei 1, 2, 3 , Haoyu Wang 1, 2, 3 , Mei Yang 1, 3 , Jiangyan Wang 1, 2, 3 , Dan Wang 1, 2, 3
Advanced Energy Materials ( IF 24.4 ) Pub Date : 2024-03-19 , DOI: 10.1002/aenm.202400108 Peng Wei 1, 2, 3 , Haoyu Wang 1, 2, 3 , Mei Yang 1, 3 , Jiangyan Wang 1, 2, 3 , Dan Wang 1, 2, 3
Affiliation
Lithium metal anode holds great promise due to its highest theoretical capacity and lowest redox potential. However, its practical application is hindered by lithium dendrite growth and exhaustive side reactions, which poses concerns to both cell performance and safety. Herein, a relocatable composite membrane is developed to simultaneously inhibit dendrite growth and stabilize solid electrolyte interphase (SEI) film. The compact packing of hollow multishelled structure (HoMS) provides percolated lithium ion channels and uniform ion flux, while the combined elastic polymer endows membrane structural flexibility to dynamically accommodate volume changes, which results in dendrite-free lithium deposition inside HoMS and underneath the membrane and stable SEI film restricted to the outer surface of HoMS. Consequently, the membrane-modified lithium metal half cell achieves an impressive Coulombic efficiency of 99.6% for over 600 cycles. Notably, full cell paired with LiFePO4 cathode stably runs for over 700 cycles, with a decay rate of only 0.045% per cycle, while the one paired with LiNi0.8Co0.1Mn0.1O2 cathode demonstrates a high capacity of 164.1 mAh g−1 at 1 C and a good capacity retention. This HoMS-based composite membrane opens up new opportunities to realize the practical application of lithium metal batteries.
中文翻译:
可重定位空心多壳结构膜可实现超稳定锂金属电池的无枝晶锂沉积
锂金属负极因其最高的理论容量和最低的氧化还原电位而具有广阔的前景。然而,其实际应用受到锂枝晶生长和详尽副反应的阻碍,这对电池性能和安全性提出了担忧。在此,开发了一种可重新定位复合膜,以同时抑制枝晶生长并稳定固体电解质中间相(SEI)膜。中空多壳结构(HoMS)的紧凑堆积提供了渗透的锂离子通道和均匀的离子通量,而组合的弹性聚合物赋予膜结构灵活性以动态适应体积变化,从而导致HoMS内部和膜下方无枝晶的锂沉积,稳定的 SEI 膜限制在 HoMS 的外表面。因此,膜改性的锂金属半电池在 600 多个循环中实现了 99.6% 的令人印象深刻的库仑效率。值得注意的是,与 LiFePO 4 正极配对的全电池可稳定运行超过 700 个周期,每个周期的衰减率仅为 0.045%,而与 LiNi 0.8 Co 0.1 Mn 0.1 O 2 正极在 1 C 下表现出 164.1 mAh g −1 的高容量和良好的容量保持率。这种基于HoMS的复合膜为实现锂金属电池的实际应用开辟了新的机遇。
更新日期:2024-03-19
中文翻译:
可重定位空心多壳结构膜可实现超稳定锂金属电池的无枝晶锂沉积
锂金属负极因其最高的理论容量和最低的氧化还原电位而具有广阔的前景。然而,其实际应用受到锂枝晶生长和详尽副反应的阻碍,这对电池性能和安全性提出了担忧。在此,开发了一种可重新定位复合膜,以同时抑制枝晶生长并稳定固体电解质中间相(SEI)膜。中空多壳结构(HoMS)的紧凑堆积提供了渗透的锂离子通道和均匀的离子通量,而组合的弹性聚合物赋予膜结构灵活性以动态适应体积变化,从而导致HoMS内部和膜下方无枝晶的锂沉积,稳定的 SEI 膜限制在 HoMS 的外表面。因此,膜改性的锂金属半电池在 600 多个循环中实现了 99.6% 的令人印象深刻的库仑效率。值得注意的是,与 LiFePO 4 正极配对的全电池可稳定运行超过 700 个周期,每个周期的衰减率仅为 0.045%,而与 LiNi 0.8 Co 0.1 Mn 0.1 O 2 正极在 1 C 下表现出 164.1 mAh g −1 的高容量和良好的容量保持率。这种基于HoMS的复合膜为实现锂金属电池的实际应用开辟了新的机遇。