当前位置:
X-MOL 学术
›
ACS Catal.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Molecular Orbital Engineering of Mixed-Addenda Polyoxometalates Boosts Light-Driven Hydrogen Evolution Activity
ACS Catalysis ( IF 11.3 ) Pub Date : 2024-03-19 , DOI: 10.1021/acscatal.4c00295 Manzhou Chi 1 , Ying Zeng 1 , Zhong-Ling Lang 2 , Huijie Li 1 , Xing Xin 1 , Yuanyuan Dong 1 , Fangyu Fu 1 , Guo-Yu Yang 1 , Hongjin Lv 1
ACS Catalysis ( IF 11.3 ) Pub Date : 2024-03-19 , DOI: 10.1021/acscatal.4c00295 Manzhou Chi 1 , Ying Zeng 1 , Zhong-Ling Lang 2 , Huijie Li 1 , Xing Xin 1 , Yuanyuan Dong 1 , Fangyu Fu 1 , Guo-Yu Yang 1 , Hongjin Lv 1
Affiliation
Inspired by the principle of molecular orbital engineering, two structurally well-defined polyoxometalate (POM)-based hydrogen-evolving catalysts, namely, [H2N(CH3)2]9.24Na3H4[Cu2.06W1.94O2(P2W16O60)2]·40H2O (POM-1) and [H2N(CH3)2]12.6Na2H3[Cu2.4Mo6.48W3.12O26(P2W12O48)2]·27H2O (POM-2), have been successfully synthesized and systematically characterized. Both POM compounds exhibited similar twin-Dawson-type polyoxoanion structures in which the monomer was connected through two μ2-O atoms bonded to the disordered Cu centers, as revealed by single-crystal X-ray diffraction analyses. Electronic structure analyses confirmed that the introduction of mix-addenda Mo atoms could readily adjust the lowest unoccupied molecular orbital (LUMO) energy level of POM-2, leading to a more negative lowest unoccupied molecular orbital (LUMO) position compared with that of POM-1. Various spectroscopic and theoretical studies confirmed that the molecular orbital engineering modulation of POM-2 could provide a higher driving force for thermodynamically favorable and efficient electron transfer from the photosensitizer to POM-2. In a three-component photocatalytic system, POM-2 exhibited the most efficient photocatalytic hydrogen evolution activity compared to all reported similar catalytic systems, achieving a catalytic turnover number (TON) of 5362 after 6 h of photocatalysis under visible-light irradiation.
中文翻译:
混合附加物多金属氧酸盐的分子轨道工程增强光驱动的析氢活性
受分子轨道工程原理的启发,两种结构明确的多金属氧酸盐(POM)基析氢催化剂,即[H 2 N(CH 3 ) 2 ] 9.24 Na 3 H 4 [Cu 2.06 W 1.94 O 2 ( P 2 W 16 O 60 ) 2 ]·40H 2 O ( POM-1 ) 和 [H 2 N(CH 3 ) 2 ] 12.6 Na 2 H 3 [Cu 2.4 Mo 6.48 W 3.12 O 26 (P 2 W 12 O 48 ) ) 2 ]·27H 2 O ( POM-2 ) 已成功合成并系统表征。单晶 X 射线衍射分析表明,两种 POM 化合物均表现出相似的双道森型多氧阴离子结构,其中单体通过与无序 Cu 中心键合的两个 μ 2 -O 原子连接。电子结构分析证实,混合附加物Mo原子的引入可以很容易地调节POM-2的最低未占分子轨道(LUMO)能级,从而导致与POM -2相比具有更负的最低未占分子轨道(LUMO)位置。 1 .各种光谱和理论研究证实, POM-2的分子轨道工程调制可以为从光敏剂到POM-2的热力学有利且高效的电子转移提供更高的驱动力。在三组分光催化体系中,与所有报道的类似催化体系相比, POM-2表现出最有效的光催化析氢活性,在可见光照射下光催化6小时后实现了5362的催化转换数(TON)。
更新日期:2024-03-19
中文翻译:
混合附加物多金属氧酸盐的分子轨道工程增强光驱动的析氢活性
受分子轨道工程原理的启发,两种结构明确的多金属氧酸盐(POM)基析氢催化剂,即[H 2 N(CH 3 ) 2 ] 9.24 Na 3 H 4 [Cu 2.06 W 1.94 O 2 ( P 2 W 16 O 60 ) 2 ]·40H 2 O ( POM-1 ) 和 [H 2 N(CH 3 ) 2 ] 12.6 Na 2 H 3 [Cu 2.4 Mo 6.48 W 3.12 O 26 (P 2 W 12 O 48 ) ) 2 ]·27H 2 O ( POM-2 ) 已成功合成并系统表征。单晶 X 射线衍射分析表明,两种 POM 化合物均表现出相似的双道森型多氧阴离子结构,其中单体通过与无序 Cu 中心键合的两个 μ 2 -O 原子连接。电子结构分析证实,混合附加物Mo原子的引入可以很容易地调节POM-2的最低未占分子轨道(LUMO)能级,从而导致与POM -2相比具有更负的最低未占分子轨道(LUMO)位置。 1 .各种光谱和理论研究证实, POM-2的分子轨道工程调制可以为从光敏剂到POM-2的热力学有利且高效的电子转移提供更高的驱动力。在三组分光催化体系中,与所有报道的类似催化体系相比, POM-2表现出最有效的光催化析氢活性,在可见光照射下光催化6小时后实现了5362的催化转换数(TON)。