当前位置:
X-MOL 学术
›
J. Materiomics
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Crystal, ferromagnetism, and magnetoresistance with sign reversal in a EuAgP semiconductor
Journal of Materiomics ( IF 8.4 ) Pub Date : 2024-03-15 , DOI: 10.1016/j.jmat.2024.02.012 Qian Zhao , Kaitong Sun , Si Wu , Hai-Feng Li
Journal of Materiomics ( IF 8.4 ) Pub Date : 2024-03-15 , DOI: 10.1016/j.jmat.2024.02.012 Qian Zhao , Kaitong Sun , Si Wu , Hai-Feng Li
We synthesized the ferromagnetic EuAgP semiconductor and conducted a comprehensive study of its crystalline, magnetic, heat capacity, band gap, and magnetoresistance properties. Our investigation utilized a combination of X-ray diffraction, optical, and PPMS DynaCool measurements. EuAgP adopts a hexagonal structure with the P 63 /mmc space group. As the temperature decreases, it undergoes a magnetic phase transition from high-temperature paramagnetism to low-temperature ferromagnetism. We determined the ferromagnetic transition temperature to be T C = 16.45(1) K by fitting the measured magnetic susceptibility using a Curie-Weiss law. Heat capacity analysis of EuAgP considered contributions from electrons, phonons, and magnons, revealing η = 0.03 J/(mol·K2 ), indicative of semiconducting behavior. Additionally, we calculated a band gap of ∼1.324(4) eV based on absorption spectrum measurements. The resistivity versus temperature of EuAgP measured in the absence of an applied magnetic field shows a pronounced peak around T C , which diminishes rapidly with increasing applied magnetic fields, ranging from 1 T to 14 T. An intriguing phenomenon emerges in the form of a distinct magnetoresistance transition, shifting from positive (e.g. , 1.95% at 300 K and 14 T) to negative (e.g. , −30.73% at 14.25 K and 14 T) as the temperature decreases. This behavior could be attributed to spin-disordered scattering.
中文翻译:
EuAgP 半导体中具有符号反转的晶体、铁磁性和磁阻
我们合成了铁磁 EuAgP 半导体,并对其晶体、磁性、热容、带隙和磁阻特性进行了全面研究。我们的研究结合了 X 射线衍射、光学和 PPMS DynaCool 测量。EuAgP 采用 P63/mmc 空间群的六边形结构。随着温度的降低,它经历了从高温顺磁性到低温铁磁性的磁相转变。我们通过使用居里-魏斯定律拟合测得的磁化率,确定铁磁转变温度为 TC = 16.45(1) K。EuAgP 的热容分析考虑了电子、声子和磁振子的贡献,显示 η = 0.03 J/(mol·K2),指示半导体行为。此外,我们根据吸收光谱测量计算出 ∼1.324(4) eV 的带隙。在没有外加磁场的情况下测得的 EuAgP 的电阻率与温度的关系显示 TC 周围有一个明显的峰值,随着外加磁场的增加,该峰值迅速减弱,范围从 1 T 到 14 T。一个有趣的现象以明显的磁阻转变的形式出现,随着温度的降低,从正(例如,在 300 K 和 14 T 时为 1.95%)转变为负(例如,在 14.25 K 和 14 T 时为 -30.73%)。这种行为可归因于自旋无序散射。
更新日期:2024-03-15
中文翻译:
EuAgP 半导体中具有符号反转的晶体、铁磁性和磁阻
我们合成了铁磁 EuAgP 半导体,并对其晶体、磁性、热容、带隙和磁阻特性进行了全面研究。我们的研究结合了 X 射线衍射、光学和 PPMS DynaCool 测量。EuAgP 采用 P63/mmc 空间群的六边形结构。随着温度的降低,它经历了从高温顺磁性到低温铁磁性的磁相转变。我们通过使用居里-魏斯定律拟合测得的磁化率,确定铁磁转变温度为 TC = 16.45(1) K。EuAgP 的热容分析考虑了电子、声子和磁振子的贡献,显示 η = 0.03 J/(mol·K2),指示半导体行为。此外,我们根据吸收光谱测量计算出 ∼1.324(4) eV 的带隙。在没有外加磁场的情况下测得的 EuAgP 的电阻率与温度的关系显示 TC 周围有一个明显的峰值,随着外加磁场的增加,该峰值迅速减弱,范围从 1 T 到 14 T。一个有趣的现象以明显的磁阻转变的形式出现,随着温度的降低,从正(例如,在 300 K 和 14 T 时为 1.95%)转变为负(例如,在 14.25 K 和 14 T 时为 -30.73%)。这种行为可归因于自旋无序散射。