当前位置: X-MOL 学术Math. Models Methods Appl. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Optimal error bounds on time-splitting methods for the nonlinear Schrödinger equation with low regularity potential and nonlinearity
Mathematical Models and Methods in Applied Sciences ( IF 3.6 ) Pub Date : 2024-02-21 , DOI: 10.1142/s0218202524500155
Weizhu Bao 1 , Ying Ma 2 , Chushan Wang 1
Affiliation  

We establish optimal error bounds on time-splitting methods for the nonlinear Schrödinger equation with low regularity potential and typical power-type nonlinearity f(ρ)=ρσ, where ρ:=|ψ|2 is the density with ψ the wave function and σ>0 the exponent of the nonlinearity. For the first-order Lie–Trotter time-splitting method, optimal L2-norm error bound is proved for L-potential and σ>0, and optimal H1-norm error bound is obtained for W1,4-potential and σ1/2. For the second-order Strang time-splitting method, optimal L2-norm error bound is established for H2-potential and σ1, and optimal H1-norm error bound is proved for H3-potential and σ3/2 (or σ=1). Compared to those error estimates of time-splitting methods in the literature, our optimal error bounds either improve the convergence rates under the same regularity assumptions or significantly relax the regularity requirements on potential and nonlinearity for optimal convergence orders. A key ingredient in our proof is to adopt a new technique called regularity compensation oscillation (RCO), where low frequency modes are analyzed by phase cancellation, and high frequency modes are estimated by regularity of the solution. Extensive numerical results are reported to confirm our error estimates and to demonstrate that they are sharp.



中文翻译:

低正则势和非线性的非线性薛定谔方程时分法的最优误差界

我们为具有低正则势和典型幂型非线性的非线性薛定谔方程的时间分割方法建立了最佳误差界Fρ=ρσ, 在哪里ρ=|ψ|2是密度ψ波函数和σ>0非线性指数。对于一阶 Lie–Trotter 时间分割方法,最优L2- 范数误差界被证明为L无穷大-潜力和σ>0,和最优的H1- 获得范数误差界1,4-潜力和σ1/2。对于二阶Strang时间分割方法,最优L2- 建立范数误差界限H2-潜力和σ1,和最优的H1- 范数误差界被证明为H3-潜力和σ3/2(或者σ=1)。与文献中时间分割方法的误差估计相比,我们的最优误差界要么提高了相同正则性假设下的收敛速度,要么显着放宽了对最优收敛阶数的势和非线性的正则性要求。我们证明的一个关键要素是采用一种称为规律性补偿振荡(RCO)的新技术,其中通过相位抵消来分析低频模式,并通过解的规律性来估计高频模式。报告了广泛的数值结果,以证实我们的错误估计并证明它们是敏锐的。

更新日期:2024-02-21
down
wechat
bug