当前位置: X-MOL 学术Math. Models Methods Appl. Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Inf–sup stabilized Scott–Vogelius pairs on general shape-regular simplicial grids by Raviart–Thomas enrichment
Mathematical Models and Methods in Applied Sciences ( IF 3.6 ) Pub Date : 2024-02-20 , DOI: 10.1142/s0218202524500180
Volker John 1, 2 , Xu Li 3, 4 , Christian Merdon 1 , Hongxing Rui 3
Affiliation  

This paper considers the discretization of the Stokes equations with Scott–Vogelius pairs of finite element spaces on arbitrary shape-regular simplicial grids. A novel way of stabilizing these pairs with respect to the discrete inf–sup condition is proposed and analyzed. The key idea consists in enriching the continuous polynomials of order k of the Scott–Vogelius velocity space with appropriately chosen and explicitly given Raviart–Thomas bubbles. This approach is inspired by [X. Li and H. Rui, A low-order divergence-free H(div)-conforming finite element method for Stokes flows, IMA J. Numer. Anal.42 (2022) 3711–3734], where the case k=1 was studied. The proposed method is pressure-robust, with optimally converging H1-conforming velocity and a small H(div)-conforming correction rendering the full velocity divergence-free. For kd, with d being the dimension, the method is parameter-free. Furthermore, it is shown that the additional degrees of freedom for the Raviart–Thomas enrichment and also all non-constant pressure degrees of freedom can be eliminated, effectively leading to a pressure-robust, inf–sup stable, optimally convergent Pk×P0 scheme. Aspects of the implementation are discussed and numerical studies confirm the analytic results.



中文翻译:

Inf-sup 通过 Raviart-Thomas 富集在一般形状规则单纯网格上稳定 Scott-Vogelius 对

本文考虑了斯托克斯方程在任意形状正则单纯网格上的有限元空间 Scott-Vogelius 对的离散化。提出并分析了一种在离散 inf-sup 条件下稳定这些对的新方法。关键思想在于丰富阶连续多项式kScott-Vogelius 速度空间与适当选择并明确给出的 Raviart-Thomas 气泡。这种方法的灵感来自于[X. Li 和 H. Rui,低阶无散度H分区-斯托克斯流的有限元方法,IMA J. Numer。肛门。42 (2022) 3711–3734],其中案例k=1被研究了。所提出的方法是压力鲁棒的,具有最佳收敛性H1- 一致的速度和小的H分区- 一致的校正使全速度无发散。为了kd, 和d作为维度,该方法是无参数的。此外,结果表明,Raviart-Thomas 富集的附加自由度以及所有非恒定压力自由度都可以被消除,有效地导致压力鲁棒、inf-sup 稳定、最佳收敛k×0方案。讨论了实施的各个方面,数值研究证实了分析结果。

更新日期:2024-02-20
down
wechat
bug