Mathematical Models and Methods in Applied Sciences ( IF 3.6 ) Pub Date : 2024-02-20 , DOI: 10.1142/s0218202524500180 Volker John 1, 2 , Xu Li 3, 4 , Christian Merdon 1 , Hongxing Rui 3
This paper considers the discretization of the Stokes equations with Scott–Vogelius pairs of finite element spaces on arbitrary shape-regular simplicial grids. A novel way of stabilizing these pairs with respect to the discrete inf–sup condition is proposed and analyzed. The key idea consists in enriching the continuous polynomials of order of the Scott–Vogelius velocity space with appropriately chosen and explicitly given Raviart–Thomas bubbles. This approach is inspired by [X. Li and H. Rui, A low-order divergence-free -conforming finite element method for Stokes flows, IMA J. Numer. Anal.42 (2022) 3711–3734], where the case was studied. The proposed method is pressure-robust, with optimally converging -conforming velocity and a small -conforming correction rendering the full velocity divergence-free. For , with being the dimension, the method is parameter-free. Furthermore, it is shown that the additional degrees of freedom for the Raviart–Thomas enrichment and also all non-constant pressure degrees of freedom can be eliminated, effectively leading to a pressure-robust, inf–sup stable, optimally convergent scheme. Aspects of the implementation are discussed and numerical studies confirm the analytic results.
中文翻译:
Inf-sup 通过 Raviart-Thomas 富集在一般形状规则单纯网格上稳定 Scott-Vogelius 对
本文考虑了斯托克斯方程在任意形状正则单纯网格上的有限元空间 Scott-Vogelius 对的离散化。提出并分析了一种在离散 inf-sup 条件下稳定这些对的新方法。关键思想在于丰富阶连续多项式Scott-Vogelius 速度空间与适当选择并明确给出的 Raviart-Thomas 气泡。这种方法的灵感来自于[X. Li 和 H. Rui,低阶无散度-斯托克斯流的有限元方法,IMA J. Numer。肛门。42 (2022) 3711–3734],其中案例被研究了。所提出的方法是压力鲁棒的,具有最佳收敛性- 一致的速度和小的- 一致的校正使全速度无发散。为了, 和作为维度,该方法是无参数的。此外,结果表明,Raviart-Thomas 富集的附加自由度以及所有非恒定压力自由度都可以被消除,有效地导致压力鲁棒、inf-sup 稳定、最佳收敛方案。讨论了实施的各个方面,数值研究证实了分析结果。