当前位置: X-MOL 学术ACS Appl. Energy Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Triggering Synergy between p-Type Sputter-Deposited FeMnOx or FeNiOx and W-Doped BiVO4 for Enhanced Oxygen Evolution
ACS Applied Energy Materials ( IF 5.4 ) Pub Date : 2024-03-12 , DOI: 10.1021/acsaem.3c02739
Niqab Khan 1 , Ariadne Koche 1 , Higor Andrade Centurion 2 , Lucas Rabelo 2 , Jefferson Bettini 3 , Gabriel T. dos Santos 3 , Flavio Leandro Souza 3 , Renato V. Gonçalves 2 , Sherdil Khan 1
Affiliation  

Engineering the photogenerated charge transfer through the solid–liquid interface is a key factor in boosting the solar energy conversion device performance, particularly, for BiVO4, which suffers recombination due to its short hole diffusion length and faster e/h+ recombination. Site-selective cocatalysts have a strong potential to scavenge holes from the BiVO4 surface. However, uniform incorporation of the cocatalyst on the semiconductor surface is also challenging. This study describes simple one-step radio frequency (RF) magnetron sputtering deposition of bimetallic p-type FeMnOx and FeNiOx hole-selective cocatalysts over pure and W-doped BiVO4 particles which led to a remarkable improvement in photocatalytic O2 evolution. As compared with the pristine BiVO4 (93 μmol), the photocatalytic O2 evolution enhanced to 143 and 181 μmol per 25 mg of samples upon loading FeMnOx cocatalyst over pure and W-doped BiVO4, respectively, under solar irradiation conditions (AM 1.5 G) which were also higher than the previous literature. The enhancement in the photoactivity was attributed to the formation of controlled and site-selective p–n junctions that led to the development of built-in electric field, thereby increasing the charge transfer and suppressing the charge recombination. The band alignment was studied by the classical band bending model, which suggested FeMnOx exhibits an intense built-in electric field compared with FeNiOx, thus resulting in better O2 evolution. Our study offers a facile way to boost the photocatalytic activity of BiVO4 by uniformly loading bimetallic cocatalysts as a hole scavenger on the material surface via DC magnetron sputtering.

中文翻译:

触发 p 型溅射沉积 FeMnOx 或 FeNiOx 与 W 掺杂 BiVO4 之间的协同作用,以增强析氧量

通过固液界面设计光生电荷转移是提高太阳能转换器件性能的关键因素,特别是对于 BiVO 4而言,其由于其短空穴扩散长度和更快的 e - /h +复合而遭受复合。位点选择性助催化剂具有清除 BiVO 4表面空穴的强大潜力。然而,将助催化剂均匀地掺入半导体表面也具有挑战性。这项研究描述了双金属 p 型 FeMnO x和 FeNiO x空穴选择性助催化剂在纯 BiVO 4 颗粒和 W 掺杂 BiVO 4颗粒上的简单一步射频 (RF) 磁控溅射沉积,从而显着改善了光催化 O 2的析出。与原始 BiVO 4 (93 μmol) 相比,在太阳照射条件下 (AM),在纯 BiVO 4 和 W 掺杂 BiVO 4上负载 FeMnO x助催化剂后,光催化 O 2释放量分别提高至每 25 mg 样品 143 和181 μmol。 1.5 G)也高于以前的文献。光活性的增强归因于受控和位点选择性p-n结的形成,从而导致内建电场的发展,从而增加电荷转移并抑制电荷复合。通过经典能带弯曲模型研究了能带排列,这表明与FeNiO x相比,FeMnO x表现出强烈的内置电场,从而导致更好的O 2演化。我们的研究提供了一种通过直流磁控溅射在材料表面均匀负载双金属助催化剂作为空穴清除剂来提高 BiVO 4光催化活性的简便方法。
更新日期:2024-03-12
down
wechat
bug