由于其高比表面积及其特性,功能化纳米材料在抗癌等医学应用领域具有巨大潜力。在此,基于氧化铁Fe 2 O 3 、用氧化铜Fe 2 O 3 @CuO改性的氧化铁和氧化钨WO 3的功能纳米粒子(NP)很容易合成用于生物医学应用。所得纳米材料的纳米晶尺寸为Fe 2 O 3 35.5 nm、Fe 2 O 3 @CuO 7 nm、WO 3 25.5 nm。除了Fe 2 O 3和WO 3 的八面体和方形纳米板之外;分别。结果显示,通过MTT法的细胞毒性测试,Fe 2 O 3 、Fe 2 O 3 @CuO和WO 3 NPs显示出显着的抗癌作用,而对正常细胞的安全作用。值得注意的是,合成的 NP ,例如我们的结果表明,Fe 2 O 3 @CuO 对MCF-7癌细胞系表现出最低的 IC 50值,约为 8.876 µg/ml,而 Fe 2 O 3为 12.87 µg/ml,WO 3为9.211 µg/ml,这表明修饰NPs Fe 2 O 3 @CuO对乳腺癌具有最高的抗增殖作用。然而,这些 NP 对Vero正常细胞系表现出安全模式,其中 Fe 2 O 3的 IC 50为 40.24 µg/ml,Fe 2 O 3 @CuO 的 IC 50 为 21.13 µg/ml,Fe 2 O 3 @CuO 的 IC 50 为 25。WO 3 NP 为 41 µg/ml。以获得进一步的证据。利用杀病毒和病毒吸附机制的抗病毒活性通过病毒吸附机制发挥作用,并阻止病毒在细胞内复制。 Fe 2 O 3 @CuO 和 WO 3 NPs 显示,测试的两种材料氧化铜(而不是单独的氧化铁)之间的组合可完全降低病毒载量的协同效应。有趣的是,使用大肠杆菌、金黄色葡萄球菌和白色念珠菌病原体评估了 Fe 2 O 3 @CuO NP、Fe 2 O 3 NP 和 WO 3 NP 的抗菌效率。 250 mg/ml WO 3 NPs 对大肠杆菌观察到最宽的微生物抑制区(约38.45 mm),而使用 40 mg/ml Fe 2 O 3 @CuO NPS 可以形成约38.45 mm 的微生物抑制区。 32.86 毫米,针对金黄色葡萄球菌。尽管如此,白色念珠菌对所有检测的纳米粒子都具有相对的抵抗力。这些纳米结构的卓越生物医学活性可能归因于它们独特的特征和公认的评价。
"点击查看英文标题和摘要"
Facile synthesis of Fe2O3, Fe2O3@CuO and WO3 nanoparticles: characterization, structure determination and evaluation of their biological activity
Due to their high specific surface area and its characteristic’s functionalized nanomaterials have great potential in medical applications specialty, as an anticancer. Herein, functional nanoparticles (NPs) based on iron oxide Fe2O3, iron oxide modified with copper oxide Fe2O3@CuO, and tungsten oxide WO3 were facile synthesized for biomedical applications. The obtained nanomaterials have nanocrystal sizes of 35.5 nm for Fe2O3, 7 nm for Fe2O3@CuO, and 25.5 nm for WO3. In addition to octahedral and square nanoplates for Fe2O3, and WO3; respectively. Results revealed that Fe2O3, Fe2O3@CuO, and WO3 NPs showed remarked anticancer effects versus a safe effect on normal cells through cytotoxicity test using MTT-assay. Notably, synthesized NPs e.g. our result demonstrated that Fe2O3@CuO exhibited the lowest IC50 value on the MCF-7 cancer cell line at about 8.876 µg/ml, compared to Fe2O3 was 12.87 µg/ml and WO3 was 9.211 µg/ml which indicate that the modification NPs Fe2O3@CuO gave the highest antiproliferative effect against breast cancer. However, these NPs showed a safe mode toward the Vero normal cell line, where IC50 were monitored as 40.24 µg/ml for Fe2O3, 21.13 µg/ml for Fe2O3@CuO, and 25.41 µg/ml for WO3 NPs. For further evidence. The antiviral activity using virucidal and viral adsorption mechanisms gave practiced effect by viral adsorption mechanism and prevented the virus from replicating inside the cells. Fe2O3@CuO and WO3 NPs showed a complete reduction in the viral load synergistic effect of combinations between the tested two materials copper oxide instead of iron oxide alone. Interestingly, the antimicrobial efficiency of Fe2O3@CuO NPs, Fe2O3NPs, and WO3NPs was evaluated using E. coli, S. aureus, and C. albicans pathogens. The widest microbial inhibition zone (ca. 38.45 mm) was observed with 250 mg/ml of WO3 NPs against E. coli, whereas using 40 mg/ml of Fe2O3@CuO NPS could form microbial inhibition zone ca. 32.86 mm against S. aureus. Nevertheless, C. albicans was relatively resistant to all examined NPs. The superior biomedical activities of these nanostructures might be due to their unique features and accepted evaluations.