当前位置: X-MOL 学术Int. J. Geom. Methods Mod. Phys. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
The Hodge–Dirac operator and Dabrowski–Sitarz–Zalecki-type theorems for manifolds with boundary
International Journal of Geometric Methods in Modern Physics ( IF 2.1 ) Pub Date : 2024-03-13 , DOI: 10.1142/s0219887824501627
Tong Wu 1 , Yong Wang 2
Affiliation  

Dabrowski et al. [Spectral metric and Einstein functionals for Hodge–Dirac operator, preprint (2023), arXiv:2307.14877] gave spectral Einstein bilinear functionals of differential forms for the Hodge–Dirac operator d+δ on an oriented even-dimensional Riemannian manifold. In this paper, we generalize the results of Dabrowski et al. to the cases of 4-dimensional oriented Riemannian manifolds with boundary. Furthermore, we give the proof of Dabrowski–Sitarz–Zalecki-type theorems associated with the Hodge–Dirac operator for manifolds with boundary.



中文翻译:

边界流形的 Hodge–Dirac 算子和 Dabrowski–Sitarz–Zalecki 型定理

达布罗斯基等人。[Hodge–Dirac 算子的谱度量和爱因斯坦泛函,预印本 (2023),arXiv:2307.14877] 给出了 Hodge–Dirac 算子微分形式的谱爱因斯坦双线性泛函d+δ在有向偶维黎曼流形上。在本文中,我们概括了 Dabrowski等人的结果。具有边界的 4 维定向黎曼流形的情况。此外,我们给出了与边界流形的 Hodge-Dirac 算子相关的 Dabrowski-Sitarz-Zalecki 型定理的证明。

更新日期:2024-03-14
down
wechat
bug