当前位置:
X-MOL 学术
›
GISci. Remote Sens.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Bridging satellite missions: deep transfer learning for enhanced tropical cyclone intensity estimation
GIScience & Remote Sensing ( IF 6.0 ) Pub Date : 2024-03-11 , DOI: 10.1080/15481603.2024.2325720 Minki Choo 1 , Yejin Kim 1 , Juhyun Lee 1 , Jungho Im 1, 2 , Il-Ju Moon 3
GIScience & Remote Sensing ( IF 6.0 ) Pub Date : 2024-03-11 , DOI: 10.1080/15481603.2024.2325720 Minki Choo 1 , Yejin Kim 1 , Juhyun Lee 1 , Jungho Im 1, 2 , Il-Ju Moon 3
Affiliation
Geostationary satellites are valuable tools for monitoring the entire lifetime of tropical cyclones (TCs). Although the most widely used method for TC intensity estimation is manual, several automa...
中文翻译:
桥接卫星任务:深度迁移学习增强热带气旋强度估计
对地静止卫星是监测热带气旋 (TC) 整个生命周期的宝贵工具。尽管最广泛使用的 TC 强度估算方法是手动,但一些自动...
更新日期:2024-03-14
中文翻译:
桥接卫星任务:深度迁移学习增强热带气旋强度估计
对地静止卫星是监测热带气旋 (TC) 整个生命周期的宝贵工具。尽管最广泛使用的 TC 强度估算方法是手动,但一些自动...