当前位置: X-MOL 学术J. Colloid Interface Sci. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enhancing electrochemical carbon dioxide reduction efficiency through heat-induced metamorphosis of copper nanowires into copper oxide/copper nanotubes with tunable surface
Journal of Colloid and Interface Science ( IF 9.4 ) Pub Date : 2024-03-06 , DOI: 10.1016/j.jcis.2024.03.007
Harshad A Bandal 1 , Hern Kim 1
Affiliation  

Electrochemical CO reduction reaction (CORR) presents a unique opportunity to convert carbon dioxide (CO) to value-added products while simultaneously storing renewable energy in the form of chemical energy. However, particle applications of this technology are limited due to the poor efficiency and product selectivity of the existing catalyst. In this study, we demonstrate a facile method for the heat-induced transformation of copper nanowires into CuO/Cu nanotubes with defect-enriched surfaces. During this transformation, the outward migration of copper results in the formation of tubular structures encased within nanosized oxide grains. Notably, the hydrogen faradaic efficiency (FE) decreases with extended heat treatment, while carbon monoxide (CO) FE increases. As compared to Cu NWs, Cu NTs exhibit lower selectivity towards H and single-carbon (C) products and favor the formation of multi-carbon (C) products. Consequently, a 2-fold increase in the single pass CO conversion (SPCC) and C half-cell energy efficiency (EE) was noted after heat treatment. The Cu NT-4 variant, synthesized under optimized conditions, exhibits the highest FE of 72.1 % for C products at an operating current density (I) of 500 mA cm.

中文翻译:


通过热诱导铜纳米线变质为具有可调表面的氧化铜/铜纳米管,提高电化学二氧化碳还原效率



电化学二氧化碳还原反应 (CORR) 提供了将二氧化碳 (CO) 转化为增值产品的独特机会,同时以化学能的形式存储可再生能源。然而,由于现有催化剂的效率和产物选择性较差,该技术的颗粒应用受到限制。在这项研究中,我们展示了一种简便的方法,可将铜纳米线热诱导转变为表面富集缺陷的 CuO/Cu 纳米管。在这种转变过程中,铜的向外迁移导致形成包裹在纳米级氧化物颗粒内的管状结构。值得注意的是,氢法拉第效率 (FE) 随着热处理时间的延长而降低,而一氧化碳 (CO) FE 则增加。与Cu NW相比,Cu NT对H和单碳(C)产物表现出较低的选择性,并且有利于多碳(C)产物的形成。因此,热处理后单程 CO 转化率 (SPCC) 和 C 半电池能量效率 (EE) 提高了 2 倍。 Cu NT-4 变体是在优化条件下合成的,在 500 mA cm 的工作电流密度 (I) 下,C 产品的 FE 最高为 72.1%。
更新日期:2024-03-06
down
wechat
bug