当前位置:
X-MOL 学术
›
Adv. Funct. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Hydrogen-Bonded Organic Frameworks Enabling Highly Robust Aqueous Phase Ultralong Room-Temperature Phosphorescence
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-03-12 , DOI: 10.1002/adfm.202401728
Wuzhen Luo 1 , Jiayin Zhou 2 , Yujing Nie 1 , Feiming Li 1, 3 , Shunyou Cai 1, 3 , Guangqiang Yin 2 , Tao Chen 2, 4 , Zhixiong Cai 1, 3
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-03-12 , DOI: 10.1002/adfm.202401728
Wuzhen Luo 1 , Jiayin Zhou 2 , Yujing Nie 1 , Feiming Li 1, 3 , Shunyou Cai 1, 3 , Guangqiang Yin 2 , Tao Chen 2, 4 , Zhixiong Cai 1, 3
Affiliation
![]() |
Aqueous phase room-temperature phosphorescence (RTP) materials are attracting increasing interest owing to their unique optical properties and promising applications. However, the realization of ultralong aqueous state RTP remains a formidable challenge due to severe quenching of triplet excitons in aqueous medium. In this study, a universal strategy is presented to achieve aqueous RTP materials through the encapsulation of organic phosphors within rigid hydrogen-bonded organic frameworks (HOFs) by in situ self-assembly. Benefiting from the compact and rigid microenvironments provided by HOFs, the nonradiative dissipations are immensely suppressed and populated triplet excitons are greatly stabilized by geometrical confinement and isolating organic phosphors from quenchers. As a result, the assembled HOFs-based materials reveal robust RTP emission with an ultralong phosphorescence lifetime of up to 493.1 ms and exhibit long-term optical and structural stability in water and even in harsh conditions (acid and base) for more than 10 days. Moreover, a fluorescent dye is introduced to finely tune the afterglow performance based on triplet-to-singlet Förster resonance energy transfer (TS-FRET), facilitating advanced information encryption and anticounterfeiting applications. This study provides a reliable and universal method to design and prepare robust RTP materials and expands their applications in advanced information encryption.
中文翻译:
氢键有机框架实现高度鲁棒的水相超长室温磷光
水相室温磷光(RTP)材料由于其独特的光学性质和广阔的应用前景而引起越来越多的关注。然而,由于水介质中三线态激子的严重猝灭,超长水态RTP的实现仍然是一个艰巨的挑战。在这项研究中,提出了一种通用策略,通过原位自组装将有机磷光体封装在刚性氢键有机框架(HOF)内来获得水性RTP材料。受益于 HOF 提供的紧凑而刚性的微环境,非辐射耗散被极大地抑制,并且通过几何限制和将有机磷光体与猝灭剂隔离,聚集的三线态激子大大稳定。因此,组装的 HOFs 材料表现出强大的 RTP 发射能力,超长磷光寿命高达 493.1 ms,并且在水中甚至在恶劣条件(酸和碱)下表现出长期光学和结构稳定性超过 10 天。此外,还引入了荧光染料,以基于三重态到单重态福斯特共振能量转移(TS-FRET)微调余辉性能,促进先进的信息加密和防伪应用。这项研究提供了一种可靠且通用的方法来设计和制备坚固的 RTP 材料,并扩展了它们在高级信息加密中的应用。
更新日期:2024-03-12
中文翻译:

氢键有机框架实现高度鲁棒的水相超长室温磷光
水相室温磷光(RTP)材料由于其独特的光学性质和广阔的应用前景而引起越来越多的关注。然而,由于水介质中三线态激子的严重猝灭,超长水态RTP的实现仍然是一个艰巨的挑战。在这项研究中,提出了一种通用策略,通过原位自组装将有机磷光体封装在刚性氢键有机框架(HOF)内来获得水性RTP材料。受益于 HOF 提供的紧凑而刚性的微环境,非辐射耗散被极大地抑制,并且通过几何限制和将有机磷光体与猝灭剂隔离,聚集的三线态激子大大稳定。因此,组装的 HOFs 材料表现出强大的 RTP 发射能力,超长磷光寿命高达 493.1 ms,并且在水中甚至在恶劣条件(酸和碱)下表现出长期光学和结构稳定性超过 10 天。此外,还引入了荧光染料,以基于三重态到单重态福斯特共振能量转移(TS-FRET)微调余辉性能,促进先进的信息加密和防伪应用。这项研究提供了一种可靠且通用的方法来设计和制备坚固的 RTP 材料,并扩展了它们在高级信息加密中的应用。