Nature Communications ( IF 14.7 ) Pub Date : 2024-03-08 , DOI: 10.1038/s41467-024-46293-w Jeongwon Park 1 , Seung Jae Kwak 2 , Sumin Kang 1 , Saeyoung Oh 3 , Bongki Shin 4 , Gichang Noh 1, 5 , Tae Soo Kim 1 , Changhwan Kim 6 , Hyeonbin Park 1, 7 , Seung Hoon Oh 7 , Woojin Kang 2 , Namwook Hur 6 , Hyun-Jun Chai 1 , Minsoo Kang 1 , Seongdae Kwon 1 , Jaehyun Lee 1 , Yongjoon Lee 8 , Eoram Moon 1 , Chuqiao Shi 4 , Jun Lou 4 , Won Bo Lee 2 , Joon Young Kwak 9 , Heejun Yang 8, 10 , Taek-Mo Chung 7 , Taeyong Eom 7 , Joonki Suh 3, 6 , Yimo Han 4 , Hu Young Jeong 3 , YongJoo Kim 11 , Kibum Kang 1, 8
The advanced patterning process is the basis of integration technology to realize the development of next-generation high-speed, low-power consumption devices. Recently, area-selective atomic layer deposition (AS-ALD), which allows the direct deposition of target materials on the desired area using a deposition barrier, has emerged as an alternative patterning process. However, the AS-ALD process remains challenging to use for the improvement of patterning resolution and selectivity. In this study, we report a superlattice-based AS-ALD (SAS-ALD) process using a two-dimensional (2D) MoS2-MoSe2 lateral superlattice as a pre-defining template. We achieved a minimum half pitch size of a sub-10 nm scale for the resulting AS-ALD on the 2D superlattice template by controlling the duration time of chemical vapor deposition (CVD) precursors. SAS-ALD introduces a mechanism that enables selectivity through the adsorption and diffusion processes of ALD precursors, distinctly different from conventional AS-ALD method. This technique facilitates selective deposition even on small pattern sizes and is compatible with the use of highly reactive precursors like trimethyl aluminum. Moreover, it allows for the selective deposition of a variety of materials, including Al2O3, HfO2, Ru, Te, and Sb2Se3.
中文翻译:
二维单层横向超晶格上的区域选择性原子层沉积
先进的图案化工艺是实现下一代高速、低功耗器件开发的集成技术基础。最近,区域选择性原子层沉积(AS-ALD)已成为一种替代的图案化工艺,它允许使用沉积阻挡层将目标材料直接沉积在所需区域上。然而,AS-ALD 工艺在提高图案分辨率和选择性方面仍然具有挑战性。在这项研究中,我们报告了一种基于超晶格的AS-ALD(SAS-ALD)工艺,使用二维(2D)MoS 2 -MoSe 2横向超晶格作为预定义模板。通过控制化学气相沉积 (CVD) 前驱体的持续时间,我们在 2D 超晶格模板上实现了所得 AS-ALD 的最小半间距尺寸亚 10 nm 级。 SAS-ALD 引入了一种通过 ALD 前驱体的吸附和扩散过程实现选择性的机制,与传统的 AS-ALD 方法明显不同。该技术即使在小图案尺寸上也有利于选择性沉积,并且与三甲基铝等高反应性前体的使用兼容。此外,它允许选择性沉积多种材料,包括Al 2 O 3 、HfO 2 、Ru、Te和Sb 2 Se 3 。