Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
On fillings of contact links of quotient singularities
Journal of Topology ( IF 0.8 ) Pub Date : 2024-03-09 , DOI: 10.1112/topo.12329 Zhengyi Zhou 1
Journal of Topology ( IF 0.8 ) Pub Date : 2024-03-09 , DOI: 10.1112/topo.12329 Zhengyi Zhou 1
Affiliation
We study several aspects of fillings for links of general isolated quotient singularities using Floer theory, including co-fillings, Weinstein fillings, strong fillings, exact fillings and exact orbifold fillings, focusing on the non-existence of exact fillings of contact links of isolated terminal quotient singularities. We provide an extensive list of isolated terminal quotient singularities whose contact links are not exactly fillable, including for , which settles a conjecture of Eliashberg, quotient singularities from general cyclic group actions and finite subgroups of , and all terminal quotient singularities in complex dimension 3. We also obtain uniqueness of the orbifold diffeomorphism type of exact orbifold fillings of contact links of some isolated terminal quotient singularities.
中文翻译:
关于商奇点的联系链的填充
我们利用Floer理论研究了一般孤立商奇点链接填充的几个方面,包括共同填充、Weinstein填充、强填充、精确填充和精确轨道填充,重点研究了孤立端子接触链接不存在精确填充的问题商奇点。我们提供了一个广泛的孤立终端商奇点列表,其联系链接无法完全填写,包括 为了 ,它解决了 Eliashberg 的猜想,一般循环群作用和有限子群的商奇点 ,以及复维 3 中的所有终端商奇点。我们还获得了一些孤立终端商奇点的接触链接的精确轨道填充的轨道微分同胚类型的唯一性。
更新日期:2024-03-10
中文翻译:
关于商奇点的联系链的填充
我们利用Floer理论研究了一般孤立商奇点链接填充的几个方面,包括共同填充、Weinstein填充、强填充、精确填充和精确轨道填充,重点研究了孤立端子接触链接不存在精确填充的问题商奇点。我们提供了一个广泛的孤立终端商奇点列表,其联系链接无法完全填写,包括