当前位置: X-MOL 学术Comm. Pure Appl. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Every finite graph arises as the singular set of a compact 3‐D calibrated area minimizing surface
Communications on Pure and Applied Mathematics ( IF 3.1 ) Pub Date : 2024-03-09 , DOI: 10.1002/cpa.22194
Zhenhua Liu 1
Affiliation  

Given any (not necessarily connected) combinatorial finite graph and any compact smooth 6‐manifold with the third Betti number , we construct a calibrated 3‐dimensional homologically area minimizing surface on equipped in a smooth metric , so that the singular set of the surface is precisely an embedding of this finite graph. Moreover, the calibration form near the singular set is a smoothly twisted special Lagrangian form. The constructions are based on some unpublished ideas of Professor Camillo De Lellis and Professor Robert Bryant.

中文翻译:

每个有限图都作为紧凑 3D 校准区域最小化表面的奇异集出现

给定任何(不一定连接的)组合有限图和任何具有第三个 Betti 数的紧凑光滑 6 流形,我们构造一个校准的三维同调面积最小化表面,配备光滑度量 ,使得该表面的奇异集为正是这个有限图的嵌入。而且,奇异集附近的标定形式是平滑扭曲的特殊拉格朗日形式。这些结构基于 Camillo De Lellis 教授和 Robert Bryant 教授的一些未发表的想法。
更新日期:2024-03-09
down
wechat
bug