当前位置: X-MOL 学术Comm. Pure Appl. Math. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Delta‐convex structure of the singular set of distance functions
Communications on Pure and Applied Mathematics ( IF 3.1 ) Pub Date : 2024-03-07 , DOI: 10.1002/cpa.22195
Tatsuya Miura 1 , Minoru Tanaka 2
Affiliation  

For the distance function from any closed subset of any complete Finsler manifold, we prove that the singular set is equal to a countable union of delta‐convex hypersurfaces up to an exceptional set of codimension two. In addition, in dimension two, the whole singular set is equal to a countable union of delta‐convex Jordan arcs up to isolated points. These results are new even in the standard Euclidean space and shown to be optimal in view of regularity.

中文翻译:

奇异距离函数集的Delta-凸结构

对于任何完整芬斯勒流形的任何闭子集的距离函数,我们证明奇异集等于三角凸超曲面的可数并集,直到余维二的特殊集合。此外,在二维中,整个奇异集等于 Delta-凸 Jordan 弧到孤立点的可数并集。即使在标准欧几里得空间中,这些结果也是新的,并且从规律性角度来看,这些结果是最优的。
更新日期:2024-03-07
down
wechat
bug