当前位置: X-MOL 学术Adv. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
An Ultra-Low Modulus of Ductile TiZrHfTa Biomedical High-Entropy Alloys through Deformation Induced Martensitic Transformation/Twinning/Amorphization
Advanced Materials ( IF 27.4 ) Pub Date : 2024-03-06 , DOI: 10.1002/adma.202310926
Bingnan Qian 1 , Xiaoqing Li 2 , Yu Wang 3 , Junhua Hou 1 , Jikui Liu 1 , Sihao Zou 1 , Fengchao An 1 , Wenjun Lu 1
Affiliation  

Biomedical alloys are paramount materials in biomedical applications, particularly in crafting biological artificial replacements. In traditional biomedical alloys, a significant challenge is simultaneously achieving an ultra-low Young's modulus, excellent biocompatibility, and acceptable ductility. A multi-component body-centered cubic (BCC) biomedical high-entropy alloy (Bio-HEA), which is composed of non-toxic elements, is noteworthy for its outstanding biocompatibility and compositional tuning capabilities. Nevertheless, the aforementioned challenges still remain. Here, a method to achieve a single phase with the lowest Young's modulus among the constituent phases by precisely tuning the stability of the BCC phase in the Bio-HEA, is proposed. The subtle tuning of the BCC phase stability also enables the induction of stress-induced martensite transformation with extremely low trigger stress. The transformation-induced plasticity and work hardening capacity are achieved via the stress-induced martensite transformation. Additionally, the hierarchical stress-induced martensite twin structure and crystalline-to-amorphous phase transformation provide robust toughening mechanisms in the Bio-HEA. The cytotoxicity test confirms that this Bio-HEA exhibits excellent biocompatibility without cytotoxicity. In conclusion, this study provides new insights into the development of biomedical alloys with a combination of ultra-low Young's modulus, excellent biocompatibility, and decent ductility.

中文翻译:


通过变形诱导马氏体相变/孪生/非晶化获得超低模量的延性 TiZrHfTa 生物医用高熵合金



生物医学合金是生物医学应用中最重要的材料,特别是在制造生物人工替代品方面。在传统的生物医用合金中,一个重大挑战是同时实现超低杨氏模量、优异的生物相容性和可接受的延展性。由无毒元素组成的多组分体心立方(BCC)生物医用高熵合金(Bio-HEA)因其出色的生物相容性和成分调节能力而引人注目。尽管如此,上述挑战仍然存在。在此,提出了一种通过精确调节 Bio-HEA 中 BCC 相的稳定性来实现组成相中杨氏模量最低的单相的方法。 BCC 相稳定性的微妙调整还能够以极低的触发应力诱导应力诱发的马氏体转变。相变诱导塑性和加工硬化能力是通过应力诱导马氏体相变实现的。此外,分层应力诱发的马氏体孪晶结构和结晶到非晶相变为 Bio-HEA 提供了强大的增韧机制。细胞毒性测试证实该Bio-HEA具有优异的生物相容性,且无细胞毒性。总之,这项研究为开发具有超低杨氏模量、优异的生物相容性和良好的延展性的生物医用合金提供了新的见解。
更新日期:2024-03-06
down
wechat
bug