当前位置: X-MOL 学术J. Comb. Theory B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Turán theorems for even cycles in random hypergraph
Journal of Combinatorial Theory Series B ( IF 1.2 ) Pub Date : 2024-03-01 , DOI: 10.1016/j.jctb.2024.02.002
Jiaxi Nie

Let be a family of -uniform hypergraphs. The random Turán number is the maximum number of edges in an -free subgraph of , where is the Erdős-Rényi random -graph with parameter . Let denote the -uniform linear cycle of length . For , Mubayi and Yepremyan showed that . This upper bound is not tight when . In this paper, we close the gap for . More precisely, we show that when . Similar results have recently been obtained independently in a different way by Mubayi and Yepremyan. For , we significantly improve Mubayi and Yepremyan's upper bound. Moreover, we give reasonably good upper bounds for the random Turán numbers of Berge even cycles, which improve previous results of Spiro and Verstraëte.

中文翻译:

随机超图中偶循环的图兰定理

设 是一个均匀超图族。随机 Turán 数是 的 自由子图中的最大边数,其中 是带有参数 的 Erdős-Rényi 随机图。让 表示 长度为 的均匀线性循环。穆巴伊和叶普雷米扬证明了这一点。当 时,这个上限并不严格。在本文中,我们缩小了 的差距。更准确地说,我们证明当 . Mubayi 和 Yepremyan 最近以不同的方式独立获得了类似的结果。对于 ,我们显着提高了 Mubayi 和 Yepremyan 的上限。此外,我们为 Berge 偶数循环的随机 Turán 数给出了相当好的上限,这改进了 Spiro 和 Verstraëte 之前的结果。
更新日期:2024-03-01
down
wechat
bug