当前位置:
X-MOL 学术
›
Comput. Math. Appl.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Analysis of a fractional-step parareal algorithm for the incompressible Navier-Stokes equations
Computers & Mathematics with Applications ( IF 2.9 ) Pub Date : 2024-03-04 , DOI: 10.1016/j.camwa.2024.02.035 Zhen Miao , Ren-Hao Zhang , Wei-Wei Han , Yao-Lin Jiang
Computers & Mathematics with Applications ( IF 2.9 ) Pub Date : 2024-03-04 , DOI: 10.1016/j.camwa.2024.02.035 Zhen Miao , Ren-Hao Zhang , Wei-Wei Han , Yao-Lin Jiang
This paper analyzes a parareal approach based on fractional-step methods for the nonstationary Navier-Stokes equations. As an efficient parallel computing framework, the coarse propagator often determines the performance of the parareal algorithm. We present a parareal algorithm using the fractional-step method, a very efficient time discrete scheme for the Naiver-Stokes equations, as the coarse propagator for the Navier-Stokes equations. Then we give the specific stability and convergence analysis of this specific parareal algorithm. Finally, numerical experiments are done to show efficiency and illustrate the theoretical results.
中文翻译:
不可压缩纳维-斯托克斯方程的分步副实数算法分析
本文分析了一种基于分步法的非平稳纳维-斯托克斯方程的拟实数方法。作为一种高效的并行计算框架,粗传播器往往决定了parareal算法的性能。我们提出了一种使用分数步法的准实数算法,这是一种非常有效的 Naiver-Stokes 方程的时间离散方案,作为 Navier-Stokes 方程的粗传播器。然后我们对该具体的副实数算法进行了具体的稳定性和收敛性分析。最后,进行数值实验以显示效率并说明理论结果。
更新日期:2024-03-04
中文翻译:
不可压缩纳维-斯托克斯方程的分步副实数算法分析
本文分析了一种基于分步法的非平稳纳维-斯托克斯方程的拟实数方法。作为一种高效的并行计算框架,粗传播器往往决定了parareal算法的性能。我们提出了一种使用分数步法的准实数算法,这是一种非常有效的 Naiver-Stokes 方程的时间离散方案,作为 Navier-Stokes 方程的粗传播器。然后我们对该具体的副实数算法进行了具体的稳定性和收敛性分析。最后,进行数值实验以显示效率并说明理论结果。