当前位置:
X-MOL 学术
›
J. Comb. Theory A
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
The second largest eigenvalue of normal Cayley graphs on symmetric groups generated by cycles
Journal of Combinatorial Theory Series A ( IF 0.9 ) Pub Date : 2024-03-01 , DOI: 10.1016/j.jcta.2024.105885 Yuxuan Li , Binzhou Xia , Sanming Zhou
Journal of Combinatorial Theory Series A ( IF 0.9 ) Pub Date : 2024-03-01 , DOI: 10.1016/j.jcta.2024.105885 Yuxuan Li , Binzhou Xia , Sanming Zhou
We study the normal Cayley graphs on the symmetric group , where and is the set of all cycles in with length in . We prove that the strictly second largest eigenvalue of can only be achieved by at most four irreducible representations of , and we determine further the multiplicity of this eigenvalue in several special cases. As a corollary, in the case when contains neither nor we know exactly when has the Aldous property, namely the strictly second largest eigenvalue is attained by the standard representation of , and we obtain that does not have the Aldous property whenever . As another corollary of our main results, we prove a recent conjecture on the second largest eigenvalue of where .
中文翻译:
由循环生成的对称群上正态凯莱图的第二大特征值
我们研究对称群上的正态凯莱图,其中 和 是长度为 的所有循环的集合。我们证明 的严格第二大特征值只能通过 的最多四个不可约表示来实现,并且我们进一步确定了在几种特殊情况下该特征值的重数。作为推论,在当 既不包含也不确切知道何时具有奥尔德斯性质的情况下,即通过 的标准表示获得严格的第二大特征值,并且每当 时我们都获得不具有奥尔德斯性质。作为我们主要结果的另一个推论,我们证明了最近关于 的第二大特征值的猜想。
更新日期:2024-03-01
中文翻译:
由循环生成的对称群上正态凯莱图的第二大特征值
我们研究对称群上的正态凯莱图,其中 和 是长度为 的所有循环的集合。我们证明 的严格第二大特征值只能通过 的最多四个不可约表示来实现,并且我们进一步确定了在几种特殊情况下该特征值的重数。作为推论,在当 既不包含也不确切知道何时具有奥尔德斯性质的情况下,即通过 的标准表示获得严格的第二大特征值,并且每当 时我们都获得不具有奥尔德斯性质。作为我们主要结果的另一个推论,我们证明了最近关于 的第二大特征值的猜想。