当前位置: X-MOL 学术Chem. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Selectivity in Thermal Atomic Layer Etching Using Sequential, Self-Limiting Fluorination and Ligand-Exchange Reactions
Chemistry of Materials ( IF 7.2 ) Pub Date : 2016-10-19 00:00:00 , DOI: 10.1021/acs.chemmater.6b02543
Younghee Lee 1 , Craig Huffman 2 , Steven M. George 1, 3
Affiliation  

Atomic layer etching (ALE) can result from sequential, self-limiting thermal reactions. The reactions during thermal ALE are defined by fluorination followed by ligand exchange using metal precursors. The metal precursors introduce various ligands that may transfer during ligand exchange. If the transferred ligands produce stable and volatile metal products, then the metal products may leave the surface and produce etching. In this work, selectivity in thermal ALE was examined by exploring tin(II) acetylacetonate (Sn(acac)2), trimethylaluminum (TMA), dimethylaluminum chloride (DMAC), and SiCl4 as the metal precursors. These metal precursors provide acac, methyl, and chloride ligands for ligand exchange. HF-pyridine was employed as the fluorination reagent. Spectroscopic ellipsometry was used to measure the etch rates of Al2O3, HfO2, ZrO2, SiO2, Si3N4, and TiN thin films on silicon wafers. The spectroscopic ellipsometry measurements revealed that HfO2 was etched by all of the metal precursors. Al2O3 was etched by all of the metal precursors except SiCl4. ZrO2 was etched by all of the metal precursors except TMA. In contrast, SiO2, Si3N4, and TiN were not etched by any of the metal precursors. These results can be explained by the stability and volatility of the possible reaction products. Temperature can also be used to obtain selective thermal ALE. The temperature dependence of ZrO2, HfO2, and Al2O3 ALE was examined using SiCl4 as the metal precursor. Higher temperatures can discriminate between the etching of ZrO2, HfO2, and Al2O3. The temperature dependence of Al2O3 ALE was also examined using Sn(acac)2, TMA, and DMAC as the metal precursors. Sn(acac)2 etched Al2O3 at temperatures ≥150 °C. DMAC etched Al2O3 at higher temperatures ≥225 °C. TMA etched Al2O3 at even higher temperatures ≥250 °C. The combination of different metal precursors with various ligands and different temperatures can provide multiple pathways for selective thermal ALE.

中文翻译:

使用顺序自限氟化和配体交换反应在热原子层蚀刻中的选择性

原子层蚀刻(ALE)可能来自顺序的,自限性的热反应。热ALE期间的反应通过氟化定义,然后使用金属前体进行配体交换。金属前体引入可以在配体交换期间转移的各种配体。如果转移的配体产生稳定且易挥发的金属产物,则金属产物可能会离开表面并产生蚀刻。在这项工作中,通过研究乙酰丙酮锡(II)(Sn(acac)2),三甲基铝(TMA),二甲基氯化铝(DMAC)和SiCl 4来研究热ALE的选择性。作为金属前体。这些金属前体提供了acac,甲基和氯化物配体,用于配体交换。HF-吡啶用作氟化试剂。椭圆偏振光谱法用于测量硅晶片上的Al 2 O 3,HfO 2,ZrO 2,SiO 2,Si 3 N 4和TiN薄膜的蚀刻速率。椭圆偏振光谱测量表明,HfO 2被所有金属前体蚀刻。除SiCl 4以外的所有金属前驱体均腐蚀了Al 2 O 3。氧化锆2除TMA以外的所有金属前驱体均会腐蚀该金属。相反,SiO 2,Si 3 N 4和TiN没有被任何金属前体蚀刻。这些结果可以用可能的反应产物的稳定性和挥发性来解释。温度也可用于获得选择性热ALE。使用SiCl 4作为金属前驱体检查了ZrO 2,HfO 2和Al 2 O 3 ALE的温度依赖性。较高的温度可以区分ZrO 2,HfO 2和Al 2 O 3的蚀刻。Al 2的温度依赖性还使用Sn(acac)2,TMA和DMAC作为金属前体检查了O 3 ALE 。Sn(acac)2在≥150°C的温度下蚀刻了Al 2 O 3。DMAC在≥225°C的较高温度下蚀刻了Al 2 O 3。TMA在≥250°C的更高温度下蚀刻Al 2 O 3。不同金属前体与各种配体和不同温度的组合可以为选择性热ALE提供多种途径。
更新日期:2016-10-19
down
wechat
bug