当前位置: X-MOL 学术J. Financ. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Measuring “Dark Matter” in Asset Pricing Models
Journal of Finance ( IF 7.6 ) Pub Date : 2024-03-03 , DOI: 10.1111/jofi.13317
HUI CHEN , WINSTON WEI DOU , LEONID KOGAN

We formalize the concept of “dark matter” in asset pricing models by quantifying the additional informativeness of cross-equation restrictions about fundamental dynamics. The dark-matter measure captures the degree of fragility for models that are potentially misspecified and unstable: a large dark-matter measure indicates that the model lacks internal refutability (weak power of optimal specification tests) and external validity (high overfitting tendency and poor out-of-sample fit). The measure can be computed at low cost even for complex dynamic structural models. To illustrate its applications, we provide quantitative examples applying the measure to (time-varying) rare-disaster risk and long-run risk models.

中文翻译:

衡量资产定价模型中的“暗物质”

我们通过量化有关基本动态的交叉方程限制的额外信息,在资产定价模型中形式化了“暗物质”的概念。暗物质度量捕捉了可能被错误指定和不稳定的模型的脆弱程度:大的暗物质度量表明模型缺乏内部可反驳性(最佳规范测试的弱力量)和外部有效性(高过度拟合倾向和较差的输出)样本拟合)。即使对于复杂的动态结构模型,也可以以低成本计算该度量。为了说明其应用,我们提供了将该度量应用于(时变)罕见灾害风险和长期风险模型的定量示例。
更新日期:2024-03-03
down
wechat
bug