当前位置: X-MOL 学术Adv. Funct. Mater. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Enabling High Performance Bismuth Trifluoride Cathode by Engineering the Cathode/Electrolyte Interface in Sulfide-Based All Solid State Batteries
Advanced Functional Materials ( IF 18.5 ) Pub Date : 2024-03-01 , DOI: 10.1002/adfm.202313685
Bin Xiong 1 , Xuedong Zhang 1 , Xiangze Ou 1 , Xiaolei Ren 2 , Junyu Chen 1 , Yaling Rao 1 , Yi Wang 3 , Jianyu Huang 1, 4 , Qiao Huang 1
Affiliation  

Metal fluorides are conversion-type cathodes that have the potential to boost the energy densities of next generation lithium-ion batteries (LIBs). However, the study of non-transitional metal fluorides (NTMFs) such as bismuth trifluoride (BiF3) is limited due to the challenges on the construction of a stable electrochemical reaction interfaces with liquid electrolyte, although it shows advantages on high electrochemical potential, moderately high theoretical capacity and low voltage hysteresis. Moreover, the performance of BiF3 in all solid state batteries (ASSBs) has not been explored. In this contribution, the micro-sized commercial BiF3 is successfully coated with a cyclic polyacrylonitrile (cPAN) and refined its size to nanoscale. The refined nano-sized BiF3@cPAN uniformly disperses in the solid electrode and delivers an initial discharge capacity of 330 and 200 mAh g−1 after 250 cycles in sulfide electrolyte based ASSBs. Furthermore, the voltage hysteresis of the ASSBs reaches a record low value of 180 mV. Postmortem analysis shows that the elastic coating hindered the undesirable interface side reaction and rendered the BiF3 with excellent cycle reversibility. This work demonstrates the crucial role of stable interfaces for BiF3 in preventing electrolyte decomposition, which promotes the practical adoption of BiF3 cathode with higher specific energy for LIBs.

中文翻译:


通过设计硫化物基全固态电池中的阴极/电解质界面来实现高性能三氟化铋阴极



金属氟化物是转换型阴极,有潜力提高下一代锂离子电池(LIB)的能量密度。然而,三氟化铋(BiF 3 )等非过渡金属氟化物(NTMF)的研究尽管表现出优势,但由于与液体电解质构建稳定的电化学反应界面的挑战而受到限制。高电化学势、中等高的理论容量和低电压滞后。此外,BiF 3 在全固态电池(ASSB)中的性能尚未得到探索。在这项贡献中,微米尺寸的商用 BiF 3 成功地涂覆有环状聚丙烯腈(cPAN),并将其尺寸细化至纳米级。精制的纳米尺寸 BiF 3 @cPAN 均匀分散在固体电极中,在基于硫化物电解质的 ASSB 中循环 250 次后,初始放电容量为 330 和 200 mAh g −1 。此外,ASSB 的电压迟滞达到 180 mV 的历史低值。事后分析表明,弹性涂层阻碍了不良的界面副反应,使BiF 3 具有优异的循环可逆性。这项工作证明了 BiF 3 稳定界面在防止电解质分解方面的关键作用,促进了具有更高比能量的 BiF 3 正极在锂离子电池中的实际应用。
更新日期:2024-03-01
down
wechat
bug