背景
接触绿色空间可以通过多种机制防止健康状况不佳。然而,暴露评估的方法存在异质性,这使得制定有效的政策建议具有挑战性。
客观的
批判性地评估卫星衍生的暴露指标——增强植被指数(EVI)的使用,以评估流行病学研究中不同类型绿色空间的使用情况。
方法
我们使用 Landsat 5-8(30 m 分辨率)计算了 2018 年英国威尔士 140 万户家庭周围 300 m 半径范围内的平均 EVI。我们使用地形矢量数据计算了另外两项指标,以表示 300 m 范围内绿地的通行情况。家庭地点。两种基于地形矢量的测量方法是按类型分层的总绿地面积和平均私人花园大小。我们使用线性回归模型来测试 EVI 是否可以区分公共绿地和私人绿地,并使用皮尔逊相关性来测试 EVI 和绿地类型之间的关联。
结果
威尔士家庭周围 300 m 半径范围内的平均 EVI 为 0.28 (IQR = 0.12)。绿地总面积和平均私人花园面积与相应的 EVI 指标显着正相关(分别为 β = < 0.0001、95% CI:0.0000、0.0000;β = 0.0001、95% CI:0.0001、0.0001)。在城市地区,花园平均面积每增加1 m 2 ,EVI 就会增加0.0002。因此,在城市地区,要使EVI指数增加0.1个单位,花园面积需要增加500 m 2 。非常小的 β 值代表没有“可测量的现实世界”关联。当按类型分层时,我们观察到绿地和 EVI 之间没有很强的关联。
影响
-
流行病学研究中广泛采用的假设是,EVI 的增加相当于绿化度和/或绿地面积的增加。
-
我们利用 2018 年的卫星图像,使用线性回归模型来测试 EVI 与社区层面的潜在绿色反射源之间的关联。
-
我们将 EVI 措施与定义公共绿地和私人绿地的“黄金标准”矢量数据集进行了比较。
-
我们发现,应谨慎解释 EVI,因为更高的 EVI 分数并不一定意味着在超本地环境中更容易获得公共绿色空间。
"点击查看英文标题和摘要"
The use of Enhanced Vegetation Index for assessing access to different types of green space in epidemiological studies
Background
Exposure to green space can protect against poor health through a variety of mechanisms. However, there is heterogeneity in methodological approaches to exposure assessments which makes creating effective policy recommendations challenging.
Objective
Critically evaluate the use of a satellite-derived exposure metric, the Enhanced Vegetation Index (EVI), for assessing access to different types of green space in epidemiological studies.
Methods
We used Landsat 5–8 (30 m resolution) to calculate average EVI for a 300 m radius surrounding 1.4 million households in Wales, UK for 2018. We calculated two additional measures using topographic vector data to represent access to green spaces within 300 m of household locations. The two topographic vector-based measures were total green space area stratified by type and average private garden size. We used linear regression models to test whether EVI could discriminate between publicly accessible and private green space and Pearson correlation to test associations between EVI and green space types.
Results
Mean EVI for a 300 m radius surrounding households in Wales was 0.28 (IQR = 0.12). Total green space area and average private garden size were significantly positively associated with corresponding EVI measures (β = < 0.0001, 95% CI: 0.0000, 0.0000; β = 0.0001, 95% CI: 0.0001, 0.0001 respectively). In urban areas, as average garden size increases by 1 m2, EVI increases by 0.0002. Therefore, in urban areas, to see a 0.1 unit increase in EVI index score, garden size would need to increase by 500 m2. The very small β values represent no ‘measurable real-world’ associations. When stratified by type, we observed no strong associations between greenspace and EVI.
Impact
-
It is a widely implemented assumption in epidiological studies that an increase in EVI is equivalent to an increase in greenness and/or green space.
-
We used linear regression models to test associations between EVI and potential sources of green reflectance at a neighbourhood level using satellite imagery from 2018.
-
We compared EVI measures with a ‘gold standard’ vector-based dataset that defines publicly accessible and private green spaces.
-
We found that EVI should be interpreted with care as a greater EVI score does not necessarily mean greater access to publicly available green spaces in the hyperlocal environment.