当前位置:
X-MOL 学术
›
Adv. Mater.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Synergizing Pyroelectric Catalysis and Enzyme Catalysis: Establishing a Reciprocal and Synergistic Model to Enhance Anti-Tumor Activity
Advanced Materials ( IF 27.4 ) Pub Date : 2024-02-27 , DOI: 10.1002/adma.202401111
Yan Wang 1 , Rui Zhang 1 , Pengyu Zang 1 , Ruoxi Zhao 1 , Linzhi Wu 2 , Yanlin Zhu 1 , Dan Yang 1 , Shili Gai 1 , Piaoping Yang 1
Advanced Materials ( IF 27.4 ) Pub Date : 2024-02-27 , DOI: 10.1002/adma.202401111
Yan Wang 1 , Rui Zhang 1 , Pengyu Zang 1 , Ruoxi Zhao 1 , Linzhi Wu 2 , Yanlin Zhu 1 , Dan Yang 1 , Shili Gai 1 , Piaoping Yang 1
Affiliation
![]() |
Nanozyme activity is greatly weakened by the microenvironment and multidrug resistance of tumor cells. Hence, a bi-catalytic nanoplatform, which promotes the anti-tumor activity through “charging empowerment” and “mutual complementation” processes involved in enzymatic and pyroelectric catalysis, by loading ultra-small nanoparticles (USNPs) of pyroelectric ZnSnO3 onto MXene nanozyme (V2CTx nanosheets), is developed. Here, the V2CTx nanosheets exhibit enhanced peroxidase activity by reacting V3+ with H2O2 to generate toxic ·OH, accelerated by the near-infrared (NIR) light mediated heat effect. The resulting V4+ is then converted to V3+ by oxidizing endogenous glutathione (GSH), realizing an enzyme-catalyzed cycle. However, the cycle will lose its persistence once GSH is insufficient; nevertheless, the pyroelectric charges generated by ZnSnO3 USNPs continuously support the V4+/V3+ conversion and ensure nanoenzyme durability. Moreover, the hyperthermia arising from the V2CTx nanosheets by NIR irradiation results in an ideal local temperature gradient for the ZnSnO3 USNPs, giving rise to an excellent pyroelectric catalytic effect by promoting band bending. Furthermore, polarized charges increase the tumor cell membrane permeability and facilitate nanodrug accumulation, thereby resolving the multidrug resistance issue. Thus, the combination of pyroelectric and enzyme catalysis together with the photothermal effect solves the dilemma of nanozymes and improves the antitumor efficiency.
中文翻译:
热释电催化与酶催化协同作用:建立互惠协同模型增强抗肿瘤活性
肿瘤细胞的微环境和多药耐药性大大削弱了纳米酶的活性。因此,双催化纳米平台通过将热释电 ZnSnO 3的超小纳米颗粒(USNP)负载到 MXene 纳米酶上,通过涉及酶催化和热释电催化的“充电赋能”和“相互补充”过程来促进抗肿瘤活性( V 2 CT x纳米片),已开发出来。在此,V 2 CT x纳米片通过使V 3+与H 2 O 2反应生成有毒的·OH,从而表现出增强的过氧化物酶活性,并通过近红外(NIR)光介导的热效应加速。然后,生成的 V 4+通过氧化内源性谷胱甘肽 (GSH) 转化为 V 3+ ,实现酶催化循环。然而,一旦GSH不足,循环就会失去持久性;尽管如此,ZnSnO 3 USNP 产生的热释电电荷持续支持 V 4+ /V 3+转换并确保纳米酶的耐用性。此外,近红外辐射下V 2 CT x纳米片产生的高温导致ZnSnO 3 USNPs产生理想的局部温度梯度,通过促进能带弯曲而产生优异的热释电催化效应。此外,极化电荷增加了肿瘤细胞膜的通透性,促进纳米药物的积累,从而解决多药耐药问题。因此,热释电与酶催化的结合以及光热效应解决了纳米酶的困境,提高了抗肿瘤效率。
更新日期:2024-02-27
中文翻译:

热释电催化与酶催化协同作用:建立互惠协同模型增强抗肿瘤活性
肿瘤细胞的微环境和多药耐药性大大削弱了纳米酶的活性。因此,双催化纳米平台通过将热释电 ZnSnO 3的超小纳米颗粒(USNP)负载到 MXene 纳米酶上,通过涉及酶催化和热释电催化的“充电赋能”和“相互补充”过程来促进抗肿瘤活性( V 2 CT x纳米片),已开发出来。在此,V 2 CT x纳米片通过使V 3+与H 2 O 2反应生成有毒的·OH,从而表现出增强的过氧化物酶活性,并通过近红外(NIR)光介导的热效应加速。然后,生成的 V 4+通过氧化内源性谷胱甘肽 (GSH) 转化为 V 3+ ,实现酶催化循环。然而,一旦GSH不足,循环就会失去持久性;尽管如此,ZnSnO 3 USNP 产生的热释电电荷持续支持 V 4+ /V 3+转换并确保纳米酶的耐用性。此外,近红外辐射下V 2 CT x纳米片产生的高温导致ZnSnO 3 USNPs产生理想的局部温度梯度,通过促进能带弯曲而产生优异的热释电催化效应。此外,极化电荷增加了肿瘤细胞膜的通透性,促进纳米药物的积累,从而解决多药耐药问题。因此,热释电与酶催化的结合以及光热效应解决了纳米酶的困境,提高了抗肿瘤效率。