当前位置:
X-MOL 学术
›
J. Proteome Res.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Quantified Metabolomics and Lipidomics Profiles Reveal Serum Metabolic Alterations and Distinguished Metabolites of Seven Chronic Metabolic Diseases
Journal of Proteome Research ( IF 3.8 ) Pub Date : 2024-02-26 , DOI: 10.1021/acs.jproteome.3c00760 Yuqing Zhang 1, 2 , Hui Zhao 3 , Jinhui Zhao 2, 4 , Wangjie Lv 2, 4 , Xueni Jia 3 , Xin Lu 2 , Xinjie Zhao 2 , Guowang Xu 1, 2, 4
Journal of Proteome Research ( IF 3.8 ) Pub Date : 2024-02-26 , DOI: 10.1021/acs.jproteome.3c00760 Yuqing Zhang 1, 2 , Hui Zhao 3 , Jinhui Zhao 2, 4 , Wangjie Lv 2, 4 , Xueni Jia 3 , Xin Lu 2 , Xinjie Zhao 2 , Guowang Xu 1, 2, 4
Affiliation
The co-occurrence of multiple chronic metabolic diseases is highly prevalent, posing a huge health threat. Clarifying the metabolic associations between them, as well as identifying metabolites which allow discrimination between diseases, will provide new biological insights into their co-occurrence. Herein, we utilized targeted serum metabolomics and lipidomics covering over 700 metabolites to characterize metabolic alterations and associations related to seven chronic metabolic diseases (obesity, hypertension, hyperuricemia, hyperglycemia, hypercholesterolemia, hypertriglyceridemia, fatty liver) from 1626 participants. We identified 454 metabolites were shared among at least two chronic metabolic diseases, accounting for 73.3% of all 619 significant metabolite–disease associations. We found amino acids, lactic acid, 2-hydroxybutyric acid, triacylglycerols (TGs), and diacylglycerols (DGs) showed connectivity across multiple chronic metabolic diseases. Many carnitines were specifically associated with hyperuricemia. The hypercholesterolemia group showed obvious lipid metabolism disorder. Using logistic regression models, we further identified distinguished metabolites of seven chronic metabolic diseases, which exhibited satisfactory area under curve (AUC) values ranging from 0.848 to 1 in discovery and validation sets. Overall, quantitative metabolome and lipidome data sets revealed widespread and interconnected metabolic disorders among seven chronic metabolic diseases. The distinguished metabolites are useful for diagnosing chronic metabolic diseases and provide a reference value for further clinical intervention and management based on metabolomics strategy.
中文翻译:
定量代谢组学和脂质组学概况揭示了七种慢性代谢疾病的血清代谢变化和特征代谢物
多种慢性代谢性疾病同时发生,对健康构成巨大威胁。阐明它们之间的代谢关联,以及识别能够区分疾病的代谢物,将为了解它们的共存提供新的生物学见解。在此,我们利用涵盖 700 多种代谢物的靶向血清代谢组学和脂质组学来表征 1626 名参与者与七种慢性代谢疾病(肥胖、高血压、高尿酸血症、高血糖、高胆固醇血症、高甘油三酯血症、脂肪肝)相关的代谢改变和关联。我们确定了至少两种慢性代谢疾病共有 454 种代谢物,占所有 619 种重要代谢物与疾病关联的 73.3%。我们发现氨基酸、乳酸、2-羟基丁酸、三酰甘油 (TG) 和二酰甘油 (DG) 在多种慢性代谢疾病中表现出相关性。许多肉碱与高尿酸血症特别相关。高胆固醇血症组表现出明显的脂质代谢紊乱。使用逻辑回归模型,我们进一步鉴定了七种慢性代谢疾病的独特代谢物,这些代谢物在发现和验证集中表现出令人满意的曲线下面积(AUC)值,范围为0.848至1。总体而言,定量代谢组和脂质组数据集揭示了七种慢性代谢疾病中广泛且相互关联的代谢紊乱。区分的代谢物有助于慢性代谢性疾病的诊断,并为基于代谢组学策略的进一步临床干预和管理提供参考价值。
更新日期:2024-02-26
中文翻译:
定量代谢组学和脂质组学概况揭示了七种慢性代谢疾病的血清代谢变化和特征代谢物
多种慢性代谢性疾病同时发生,对健康构成巨大威胁。阐明它们之间的代谢关联,以及识别能够区分疾病的代谢物,将为了解它们的共存提供新的生物学见解。在此,我们利用涵盖 700 多种代谢物的靶向血清代谢组学和脂质组学来表征 1626 名参与者与七种慢性代谢疾病(肥胖、高血压、高尿酸血症、高血糖、高胆固醇血症、高甘油三酯血症、脂肪肝)相关的代谢改变和关联。我们确定了至少两种慢性代谢疾病共有 454 种代谢物,占所有 619 种重要代谢物与疾病关联的 73.3%。我们发现氨基酸、乳酸、2-羟基丁酸、三酰甘油 (TG) 和二酰甘油 (DG) 在多种慢性代谢疾病中表现出相关性。许多肉碱与高尿酸血症特别相关。高胆固醇血症组表现出明显的脂质代谢紊乱。使用逻辑回归模型,我们进一步鉴定了七种慢性代谢疾病的独特代谢物,这些代谢物在发现和验证集中表现出令人满意的曲线下面积(AUC)值,范围为0.848至1。总体而言,定量代谢组和脂质组数据集揭示了七种慢性代谢疾病中广泛且相互关联的代谢紊乱。区分的代谢物有助于慢性代谢性疾病的诊断,并为基于代谢组学策略的进一步临床干预和管理提供参考价值。