当前位置: X-MOL 学术Algebra Number Theory › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Wide moments of L-functions I : Twists by class group characters of imaginary quadratic fields
Algebra & Number Theory ( IF 0.9 ) Pub Date : 2024-02-26 , DOI: 10.2140/ant.2024.18.735
Asbjørn Christian Nordentoft

We calculate certain “wide moments” of central values of Rankin–Selberg L-functions L(π Ω, 1 2) where π is a cuspidal automorphic representation of GL 2 over and Ω is a Hecke character (of conductor 1) of an imaginary quadratic field. This moment calculation is applied to obtain “weak simultaneous” nonvanishing results, which are nonvanishing results for different Rankin–Selberg L-functions where the product of the twists is trivial.

The proof relies on relating the wide moments of L-functions to the usual moments of automorphic forms evaluated at Heegner points using Waldspurger’s formula. To achieve this, a classical version of Waldspurger’s formula for general weight automorphic forms is derived, which might be of independent interest. A key input is equidistribution of Heegner points (with explicit error terms), together with nonvanishing results for certain period integrals. In particular, we develop a soft technique for obtaining the nonvanishing of triple convolution L-functions.



中文翻译:

L-函数 I 的宽矩:按虚二次域的类群特征扭曲

我们计算 Rankin-Selberg 中心值的某些“宽矩”L-功能Lπ Ω, 1 2在哪里π是一个尖部自同构表示GL 2超过Ω是赫克特征(指挥家 1) 的虚二次场。该矩计算用于获得“弱同时”非零结果,这是不同Rankin-Selberg的非零结果L- 扭曲的乘积微不足道的函数。

证明依赖于关联广泛的时刻L- 使用 Waldspurger 公式在 Heegner 点评估的自守形式的通常矩的函数。为了实现这一目标,推导了沃尔德斯普格一般权自同构形式公式的经典版本,这可能具有独立意义。关键输入是 Heegner 点的均匀分布(具有明确的误差项),以及某些周期积分的非零结果。特别是,我们开发了一种软技术来获得三重卷积的非零性L-功能。

更新日期:2024-02-27
down
wechat
bug