Algebra & Number Theory ( IF 0.9 ) Pub Date : 2024-02-26 , DOI: 10.2140/ant.2024.18.735 Asbjørn Christian Nordentoft
We calculate certain “wide moments” of central values of Rankin–Selberg -functions where is a cuspidal automorphic representation of over and is a Hecke character (of conductor ) of an imaginary quadratic field. This moment calculation is applied to obtain “weak simultaneous” nonvanishing results, which are nonvanishing results for different Rankin–Selberg -functions where the product of the twists is trivial.
The proof relies on relating the wide moments of -functions to the usual moments of automorphic forms evaluated at Heegner points using Waldspurger’s formula. To achieve this, a classical version of Waldspurger’s formula for general weight automorphic forms is derived, which might be of independent interest. A key input is equidistribution of Heegner points (with explicit error terms), together with nonvanishing results for certain period integrals. In particular, we develop a soft technique for obtaining the nonvanishing of triple convolution -functions.
中文翻译:
L-函数 I 的宽矩:按虚二次域的类群特征扭曲
我们计算 Rankin-Selberg 中心值的某些“宽矩”-功能在哪里是一个尖部自同构表示超过和是赫克特征(指挥家 ) 的虚二次场。该矩计算用于获得“弱同时”非零结果,这是不同Rankin-Selberg的非零结果- 扭曲的乘积微不足道的函数。
证明依赖于关联广泛的时刻- 使用 Waldspurger 公式在 Heegner 点评估的自守形式的通常矩的函数。为了实现这一目标,推导了沃尔德斯普格一般权自同构形式公式的经典版本,这可能具有独立意义。关键输入是 Heegner 点的均匀分布(具有明确的误差项),以及某些周期积分的非零结果。特别是,我们开发了一种软技术来获得三重卷积的非零性-功能。