当前位置:
X-MOL 学术
›
Algebra Number Theory
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
On Kato and Kuzumaki’s properties for the Milnor K2 of function fields of p-adic curves
Algebra & Number Theory ( IF 0.9 ) Pub Date : 2024-02-26 , DOI: 10.2140/ant.2024.18.815 Diego Izquierdo , Giancarlo Lucchini Arteche
中文翻译:
关于 p-adic 曲线函数场 Milnor K2 的 Kato 和 Kuzumaki 性质
更新日期:2024-02-27
Algebra & Number Theory ( IF 0.9 ) Pub Date : 2024-02-26 , DOI: 10.2140/ant.2024.18.815 Diego Izquierdo , Giancarlo Lucchini Arteche
Let be the function field of a curve over a -adic field . We prove that, for each and for each hypersurface in of degree with , the second Milnor -theory group of is spanned by the images of the norms coming from finite extensions of over which has a rational point. When the curve has a point in the maximal unramified extension of , we generalize this result to hypersurfaces in of degree with .
中文翻译:
关于 p-adic 曲线函数场 Milnor K2 的 Kato 和 Kuzumaki 性质
让是曲线的函数场在...之上-adic场。我们证明,对于每个对于每个超曲面在学位的和, 第二个米尔诺- 理论组被来自有限扩展的规范图像所跨越的在之上有其合理性。当曲线在最大无分支扩展中有一个点,我们将这个结果推广到超曲面在学位的和。