当前位置: X-MOL 学术Remote Sens. Ecol. Conserv. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
High-resolution thermal imagery reveals how interactions between crown structure and genetics shape plant temperature
Remote Sensing in Ecology and Conservation ( IF 3.9 ) Pub Date : 2023-07-21 , DOI: 10.1002/rse2.359
Peter J. Olsoy 1 , Andrii Zaiats 1 , Donna M. Delparte 2 , Matthew J. Germino 3 , Bryce A. Richardson 4 , Spencer Roop 5 , Anna V. Roser 1 , Jennifer S. Forbey 1 , Megan E. Cattau 6 , Sven Buerki 1 , Keith Reinhardt 5 , T. Trevor Caughlin 1
Affiliation  

Understanding interactions between environmental stress and genetic variation is crucial to predict the adaptive capacity of species to climate change. Leaf temperature is both a driver and a responsive indicator of plant physiological response to thermal stress, and methods to monitor it are needed. Foliar temperatures vary across leaf to canopy scales and are influenced by genetic factors, challenging efforts to map and model this critical variable. Thermal imagery collected using unoccupied aerial systems (UAS) offers an innovative way to measure thermal variation in plants across landscapes at leaf-level resolutions. We used a UAS equipped with a thermal camera to assess temperature variation among genetically distinct populations of big sagebrush (Artemisia tridentata), a keystone plant species that is the focus of intensive restoration efforts throughout much of western North America. We completed flights across a growing season in a sagebrush common garden to map leaf temperature relative to subspecies and cytotype, physiological phenotypes of plants, and summer heat stress. Our objectives were to (1) determine whether leaf-level stomatal conductance corresponds with changes in crown temperature; (2) quantify genetic (i.e., subspecies and cytotype) contributions to variation in leaf and crown temperatures; and (3) identify how crown structure, solar radiation, and subspecies-cytotype relate to leaf-level temperature. When considered across the whole season, stomatal conductance was negatively, non-linearly correlated with crown-level temperature derived from UAS. Subspecies identity best explained crown-level temperature with no difference observed between cytotypes. However, structural phenotypes and microclimate best explained leaf-level temperature. These results show how fine-scale thermal mapping can decouple the contribution of genetic, phenotypic, and microclimate factors on leaf temperature dynamics. As climate-change-induced heat stress becomes prevalent, thermal UAS represents a promising way to track plant phenotypes that emerge from gene-by-environment interactions.

中文翻译:

高分辨率热图像揭示了树冠结构和遗传学之间的相互作用如何影响植物温度

了解环境压力和遗传变异之间的相互作用对于预测物种对气候变化的适应能力至关重要。叶温既是植物对热应激生理反应的驱动因素,也是响应指标,因此需要监测叶温的方法。叶面温度从叶子到冠层的尺度各不相同,并受到遗传因素的影响,这对绘制和模拟这一关键变量的工作提出了挑战。使用无人航空系统 (UAS) 收集的热图像提供了一种创新方法,以叶级分辨率测量整个景观中植物的热变化。我们使用配备热像仪的无人机来评估大山艾树(Artemisia tridentata)基因不同种群之间的温度变化,大山艾树是一种关键植物物种,是北美西部大部分地区密集恢复工作的重点。我们在山艾树公共花园中完成了整个生长季节的飞行,以绘制相对于亚种和细胞型、植物生理表型和夏季热应激的叶子温度。我们的目标是(1)确定叶级气孔导度是否与树冠温度的变化相对应;(2) 量化遗传(即亚种和细胞型)对叶和冠温度变化的贡献;(3) 确定树冠结构、太阳辐射和亚种细胞型与叶面温度的关系。当考虑整个季节时,气孔导度与 UAS 产生的冠层温度呈负非线性相关。亚种身份最好地解释了冠层温度,在细胞类型之间没有观察到差异。然而,结构表型和小气候最好地解释了叶面温度。这些结果表明,精细尺度热图可以如何消除遗传、表型和微气候因素对叶片温度动态的影响。随着气候变化引起的热应激变得普遍,热无人机成为追踪基因与环境相互作用中出现的植物表型的一种有前途的方法。
更新日期:2023-07-21
down
wechat
bug