在本研究中,采用脉冲激光沉积(PLD)方法在不同温度下在玻璃和硅基板上制备纳米结构BaTiO 3薄膜。结构分析证实形成了四方相和六方相混合的晶体纳米结构BaTiO 3 ,并且在150℃下沉积的薄膜具有最好的结晶度和最大的粒径。随着基底温度从 60 °C 升高到 150 °C,BaTiO 3纳米结构的光学能隙从 3.94 eV 降低到 3.84 eV。在25、60、100和150℃下沉积的BaTiO 3薄膜的光致发光光谱分别表现出以450、512、474和531 nm为中心的发射峰。 BaTiO 3薄膜的拉曼光谱显示E(LO)、A(TO)、E(LO)+TO和B1振动模式。霍尔测量表明,BaTiO 3薄膜的迁移率随着温度上升至 100 °C 而增加,然后在 150 °C 时下降。在黑暗和光照下研究了在 25 至 150 °C 温度范围内沉积的 BaTiO 3 /p-Si 异质结的电流-电压特性。异质结表现出整流特性,在 100 °C 下制备的异质结观察到最佳整流因子。在 25、60、100 和 150 °C 下制造的异质结的理想因子值分别为 4.3、3.8、2.8 和 5。该研究表明,随着基板温度的升高,品质因数和光电探测器性能都会得到改善。随着沉积温度从 25 °C 升至 100 °C,响应度从 2.2 A/W 增加至 9.25 A/W。 在最佳衬底温度100℃下制备的光电探测器在500 nm处的探测率(D*)和外量子效率(EQE)分别为4.62×10 12 Jones和114%。
"点击查看英文标题和摘要"
Role of substrate temperature on the performance of BaTiO3/Si photodetector prepared by pulsed laser deposition
In this study, the pulsed laser deposition (PLD) method was employed to fabricate nanostructured BaTiO3 films on glass and silicon substrates at varying temperatures. The structural analysis confirmed the formation of crystalline nanostructured BaTiO3 with mixed tetragonal and hexagonal phases, and the film deposited at 150 °C has the best crystallinity and largest particle size. The optical energy gap of the BaTiO3 nanostructure decreases from 3.94 to 3.84 eV, with increasing substrate temperature from 60 to 150 °C. Photoluminescence spectra of BaTiO3 films deposited at 25, 60, 100, and 150 °C exhibit emission peaks centered at 450, 512, 474, and 531 nm, respectively. Raman spectra of BaTiO3 films show E (LO), A (TO), E (LO) + TO, and B1 vibration modes. Hall measurements reveal that the mobility of the BaTiO3 film increases with temperature up to 100 °C and then decreases at 150 °C. The current–voltage characteristics of the BaTiO3/p-Si heterojunction, deposited over a temperature range of 25 to 150 °C, were investigated in the dark and under illumination. The heterojunctions exhibit rectifying properties, with the best rectification factor observed for the heterojunction prepared at 100 °C. The values of the ideality factor for the heterojunctions fabricated at 25, 60, 100, and 150 °C were 4.3, 3.8, 2.8, and 5, respectively. The study reveals an improvement in both the figures of merit and the photodetector performance with increased substrate temperature. The responsivity increases from 2.2 to 9.25 A/W as the deposition temperature rises from 25 to 100 °C. The detectivity (D*) and external quantum efficiency (EQE) of the photodetector prepared at the optimum substrate temperature of 100 °C, were found to be 4.62 × 1012 Jones and 114%, respectively, at 500 nm.