当前位置: X-MOL 学术IEEE Commun. Surv. Tutor. › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
Revolutionizing Future Connectivity: A Contemporary Survey on AI-Empowered Satellite-Based Non-Terrestrial Networks in 6G
IEEE Communications Surveys & Tutorials ( IF 34.4 ) Pub Date : 2024-01-19 , DOI: 10.1109/comst.2023.3347145
Shadab Mahboob 1 , Lingjia Liu 1
Affiliation  

Non-Terrestrial Networks (NTN) are expected to be a critical component of 6th Generation (6G) networks, providing ubiquitous, continuous, and scalable services. Satellites emerge as the primary enabler for NTN, leveraging their extensive coverage, stable orbits, scalability, and adherence to international regulations. However, satellite-based NTN presents unique challenges, including long propagation delay, high Doppler shift, frequent handovers, spectrum sharing complexities, and intricate beam and resource allocation, among others. The integration of NTNs into existing terrestrial networks in 6G introduces a range of novel challenges, including task offloading, network routing, network slicing, and many more. To tackle all these obstacles, this paper proposes Artificial Intelligence (AI) as a promising solution, harnessing its ability to capture intricate correlations among diverse network parameters. We begin by providing a comprehensive background on NTN and AI, highlighting the potential of AI techniques in addressing various NTN challenges. Next, we present an overview of existing works, emphasizing AI as an enabling tool for satellite-based NTN, and explore potential research directions. Furthermore, we discuss ongoing research efforts that aim to enable AI in satellite-based NTN through software-defined implementations, while also discussing the associated challenges. Finally, we conclude by providing insights and recommendations for enabling AI-driven satellite-based NTN in future 6G networks.

中文翻译:


彻底改变未来的连接:对 6G 中人工智能赋能的基于卫星的非地面网络的当代调查



非地面网络 (NTN) 预计将成为第六代 (6G) 网络的关键组成部分,提供无处不在、连续且可扩展的服务。卫星凭借其广泛的覆盖范围、稳定的轨道、可扩展性以及对国际法规的遵守,成为 NTN 的主要推动者。然而,基于卫星的 NTN 面临着独特的挑战,包括长传播延迟、高多普勒频移、频繁切换、频谱共享复杂性以及复杂的波束和资源分配等。将 NTN 集成到 6G 中的现有地面网络中带来了一系列新的挑战,包括任务卸载、网络路由、网络切片等。为了解决所有这些障碍,本文提出人工智能(AI)作为一种有前途的解决方案,利用其捕获不同网络参数之间复杂相关性的能力。我们首先提供 NTN 和人工智能的全面背景,强调人工智能技术在解决各种 NTN 挑战方面的潜力。接下来,我们概述现有工作,强调人工智能作为基于卫星的 NTN 的支持工具,并探索潜在的研究方向。此外,我们还讨论了正在进行的研究工作,旨在通过软件定义的实现在基于卫星的 NTN 中实现人工智能,同时还讨论了相关的挑战。最后,我们提供了在未来 6G 网络中实现人工智能驱动的基于卫星的 NTN 的见解和建议。
更新日期:2024-01-19
down
wechat
bug