Molecular Biology Reports ( IF 2.6 ) Pub Date : 2024-02-23 , DOI: 10.1007/s11033-024-09281-3 Deqing Yang , Dongliang Li , Lili Jiang , Jia Lin , Guoqing Yue , Kang Xiao , Xuxing Hao , Qinge Ji , Yongcong Hong , Pumo Cai , Jianquan Yang
Background
Olfaction plays an important role in host-seeking by parasitoids, as they can sense chemical signals using sensitive chemosensory systems. Psyttalia incisi (Silvestri) (Hymenoptera: Braconidae) is the dominant parasitoid of Bactrocera dorsalis (Hendel) in fruit-producing regions of southern China. The olfactory behavior of P. incisi has been extensively studied; however, the chemosensory mechanisms of this species are not fully understood.
Results
Bioinformatics analysis of 64,515 unigenes from the antennal transcriptome of both male and female adults P. incisi identified 87 candidate chemosensory genes. These included 13 odorant-binding proteins (OBPs), seven gustatory receptors (GRs), 55 odorant receptors (ORs), 10 ionotropic receptors (IRs), and two sensory neuron membrane proteins (SNMPs). Phylogenetic trees were constructed to predict evolutionary relationships between these chemosensory genes in hymenopterans. Moreover, the tissue expression profiles of 13 OBPs were analyzed by quantitative real-time PCR, revealing high expression of seven OBPs (1, 3, 6, 7, 8, 12, and 13) in the antennae.
Conclusion
This study represents the first identification of chemosensory genes and the determination of their expression patterns in different tissues of P. incisi. These results contribute to a better understanding of the function of the chemosensory system of this parasitoid species.