当前位置:
X-MOL 学术
›
Optim. Control Appl. Methods
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
A shift-splitting Jacobi-gradient iterative algorithm for solving the matrix equation A𝒱−𝒱‾B=C
Optimal Control Applications and Methods ( IF 2.0 ) Pub Date : 2024-02-21 , DOI: 10.1002/oca.3112 Ahmed M. E. Bayoumi 1
Optimal Control Applications and Methods ( IF 2.0 ) Pub Date : 2024-02-21 , DOI: 10.1002/oca.3112 Ahmed M. E. Bayoumi 1
Affiliation
To improve the convergence of the gradient iterative (GI) algorithm and the Jacobi-gradient iterative (JGI) algorithm [Bayoumi, Appl Math Inf Sci, 2021], a shift-splitting Jacobi-gradient iterative (SSJGI) algorithm for solving the matrix equation is presented in this paper, which is based on the splitting of the coefficient matrices. The proposed algorithm converges to the exact solution for any initial value with some conditions. To demonstrate the effectiveness of the SSJGI algorithm and to compare it to the GI algorithm and the JGI algorithm [Bayoumi, Appl Math Inf Sci, 2021], numerical examples are provided.
中文翻译:
用于求解矩阵方程 A𝒱−𝒱‾B=C 的移位分割雅可比梯度迭代算法
为了提高梯度迭代(GI)算法和雅可比梯度迭代(JGI)算法的收敛性[Bayoumi, Appl Math Inf Sci , 2021],提出一种用于求解矩阵方程的移位分割雅可比梯度迭代(SSJGI)算法 本文提出了基于系数矩阵分裂的方法。所提出的算法在某些条件下收敛到任何初始值的精确解。为了证明 SSJGI 算法的有效性并将其与 GI 算法和 JGI 算法进行比较 [Bayoumi, Appl Math Inf Sci , 2021],提供了数值示例。
更新日期:2024-02-22
中文翻译:
用于求解矩阵方程 A𝒱−𝒱‾B=C 的移位分割雅可比梯度迭代算法
为了提高梯度迭代(GI)算法和雅可比梯度迭代(JGI)算法的收敛性[Bayoumi, Appl Math Inf Sci , 2021],提出一种用于求解矩阵方程的移位分割雅可比梯度迭代(SSJGI)算法