当前位置:
X-MOL 学术
›
Int. J. Commun. Syst.
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Dual interactive Wasserstein generative adversarial networks optimized with hybrid Archimedes optimization and chimp optimization algorithm-based channel estimation in OFDM
International Journal of Communication Systems ( IF 1.7 ) Pub Date : 2024-02-15 , DOI: 10.1002/dac.5720 S. K. Mydhili 1
International Journal of Communication Systems ( IF 1.7 ) Pub Date : 2024-02-15 , DOI: 10.1002/dac.5720 S. K. Mydhili 1
Affiliation
Dual interactive Wasserstein generative adversarial networks optimized with hybrid Archimedes optimization and chimp optimization algorithm-based channel estimation in OFDM (DiWGAN-Hyb AOA-COA-MIMO-OFDM) is proposed in this manuscript. In OFDM, there is a non-stationary channel physical appearance during channel estimation (CE). Therefore in this work, Hyb AOA-COA is employed to enhance the DiWGAN weight parameters. The proposed DiWGAN-Hyb AOA-COA-MIMO-OFDM technique is executed in network simulator (NS2) tool. The proposed technique attains lower computational cost 99.67%, 92.34%, and 97.45%; lesser bit error rate 98.33%, 83.12%, and 88.96%; and lesser mean square error 93.15%, 79.90%, and 92.88% compared with existing methods, like MIMO-OFDM system using deep neural network and MN-based improved AMO model (DNN-IAMO-MIMO-OFDM), MIMO-OFDM systems using the deep learning and optimization (RBFNN-PSO-MIMO-OFDM), and MIMO-OFDM systems using hybrid neural network (HNN-CSI-MIMO-OFDM) respectively.
中文翻译:
双交互式 Wasserstein 生成对抗网络,采用混合阿基米德优化和基于黑猩猩优化算法的 OFDM 信道估计进行优化
本手稿提出了采用混合阿基米德优化和基于黑猩猩优化算法的 OFDM 信道估计(DiWGAN-Hyb AOA-COA-MIMO-OFDM)进行优化的双交互式 Wasserstein 生成对抗网络。在 OFDM 中,信道估计 (CE) 期间存在非平稳信道物理外观。因此,在这项工作中,采用 Hyb AOA-COA 来增强 DiWGAN 权重参数。所提出的 DiWGAN-Hyb AOA-COA-MIMO-OFDM 技术在网络模拟器 (NS2) 工具中执行。所提出的技术实现了较低的计算成本99.67%、92.34%和97.45%;误码率较低,分别为98.33%、83.12%、88.96%;与现有方法相比,均方误差更小93.15%、79.90%和92.88%,例如使用深度神经网络和基于MN的改进AMO模型(DNN-IAMO-MIMO-OFDM)的MIMO-OFDM系统,使用分别是深度学习和优化(RBFNN-PSO-MIMO-OFDM)和使用混合神经网络的MIMO-OFDM系统(HNN-CSI-MIMO-OFDM)。
更新日期:2024-02-15
中文翻译:
双交互式 Wasserstein 生成对抗网络,采用混合阿基米德优化和基于黑猩猩优化算法的 OFDM 信道估计进行优化
本手稿提出了采用混合阿基米德优化和基于黑猩猩优化算法的 OFDM 信道估计(DiWGAN-Hyb AOA-COA-MIMO-OFDM)进行优化的双交互式 Wasserstein 生成对抗网络。在 OFDM 中,信道估计 (CE) 期间存在非平稳信道物理外观。因此,在这项工作中,采用 Hyb AOA-COA 来增强 DiWGAN 权重参数。所提出的 DiWGAN-Hyb AOA-COA-MIMO-OFDM 技术在网络模拟器 (NS2) 工具中执行。所提出的技术实现了较低的计算成本99.67%、92.34%和97.45%;误码率较低,分别为98.33%、83.12%、88.96%;与现有方法相比,均方误差更小93.15%、79.90%和92.88%,例如使用深度神经网络和基于MN的改进AMO模型(DNN-IAMO-MIMO-OFDM)的MIMO-OFDM系统,使用分别是深度学习和优化(RBFNN-PSO-MIMO-OFDM)和使用混合神经网络的MIMO-OFDM系统(HNN-CSI-MIMO-OFDM)。