当前位置:
X-MOL 学术
›
J. Materiomics
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Thinner 2D α-MoO3 makes setting up memristors easier
Journal of Materiomics ( IF 8.4 ) Pub Date : 2024-02-15 , DOI: 10.1016/j.jmat.2024.01.012 Yukun Hong , Shangui Lan , Baojun Pan , Zhixiang Zhang , Bingbing Chen , Lijie Zhang , Peijian Wang
Journal of Materiomics ( IF 8.4 ) Pub Date : 2024-02-15 , DOI: 10.1016/j.jmat.2024.01.012 Yukun Hong , Shangui Lan , Baojun Pan , Zhixiang Zhang , Bingbing Chen , Lijie Zhang , Peijian Wang
Two-dimensional (2D) metal oxide α-MoO shows great potentials because of its very high dielectric constant, air stability and anisotropic phonon polaritons. However, a method to produce ultrathin single crystalline α-MoO with high transferability for functional device architecture is lacking. Herein, we report on the controllable synthesis of ultrathin α-MoO single crystals chemical vapor deposition (CVD) assisted by plasma pretreatment. We also carried out systematic computational work to explicate the mechanism for the slantly-oriented growth of thin nanosheets on plasma-pretreated substrate. The method possesses certain universality to synthesize other ultrathin oxide materials, such as BiO and SbO nanosheets. As-grown α-MoO presents a high dielectric constant (≈40), ultrathin thickness (≈3 nm) and high transferability. Memristors with α-MoO as the functional layers show excellent performance featuring high on/off ratio of approximately 10, much lower set voltage around 0.5 V, and highly repetitive voltage sweep endurance. The power consumption of MoO memristors is significantly reduced, resulted from reduced thickness of the MoO nanosheets. Single crystal ultrathin α-MoO shows great potentials in post-Moore memristor and the synthesis of CVD assisted by plasma pretreatment approach points to a new route for materials growth.
中文翻译:
更薄的 2D α-MoO3 使忆阻器的设置更容易
二维(2D)金属氧化物α-MoO由于其极高的介电常数、空气稳定性和各向异性声子极化激元而显示出巨大的潜力。然而,缺乏一种生产具有高可转移性的功能器件结构超薄单晶α-MoO的方法。在此,我们报道了等离子体预处理辅助的超薄α-MoO单晶化学气相沉积(CVD)的可控合成。我们还进行了系统的计算工作,以阐明薄纳米片在等离子体预处理基底上倾斜定向生长的机制。该方法对于合成Bi2O、SbO纳米片等其他超薄氧化物材料具有一定的普适性。生长的 α-MoO 具有高介电常数(约 40)、超薄厚度(约 3 nm)和高可转移性。以α-MoO作为功能层的忆阻器表现出优异的性能,具有约10的高开/关比、低得多的设定电压(约0.5 V)以及高重复电压扫描耐久性。由于 MoO 纳米片厚度的减小,MoO 忆阻器的功耗显着降低。单晶超薄α-MoO在后摩尔忆阻器方面显示出巨大潜力,等离子体预处理方法辅助的CVD合成为材料生长开辟了一条新途径。
更新日期:2024-02-15
中文翻译:
更薄的 2D α-MoO3 使忆阻器的设置更容易
二维(2D)金属氧化物α-MoO由于其极高的介电常数、空气稳定性和各向异性声子极化激元而显示出巨大的潜力。然而,缺乏一种生产具有高可转移性的功能器件结构超薄单晶α-MoO的方法。在此,我们报道了等离子体预处理辅助的超薄α-MoO单晶化学气相沉积(CVD)的可控合成。我们还进行了系统的计算工作,以阐明薄纳米片在等离子体预处理基底上倾斜定向生长的机制。该方法对于合成Bi2O、SbO纳米片等其他超薄氧化物材料具有一定的普适性。生长的 α-MoO 具有高介电常数(约 40)、超薄厚度(约 3 nm)和高可转移性。以α-MoO作为功能层的忆阻器表现出优异的性能,具有约10的高开/关比、低得多的设定电压(约0.5 V)以及高重复电压扫描耐久性。由于 MoO 纳米片厚度的减小,MoO 忆阻器的功耗显着降低。单晶超薄α-MoO在后摩尔忆阻器方面显示出巨大潜力,等离子体预处理方法辅助的CVD合成为材料生长开辟了一条新途径。