当前位置: X-MOL 学术J. Comb. Theory B › 论文详情
Our official English website, www.x-mol.net, welcomes your feedback! (Note: you will need to create a separate account there.)
How connectivity affects the extremal number of trees
Journal of Combinatorial Theory Series B ( IF 1.2 ) Pub Date : 2024-02-19 , DOI: 10.1016/j.jctb.2024.02.001
Suyun Jiang , Hong Liu , Nika Salia

The Erdős-Sós conjecture states that the maximum number of edges in an -vertex graph without a given -vertex tree is at most . Despite significant interest, the conjecture remains unsolved. Recently, Caro, Patkós, and Tuza considered this problem for host graphs that are connected. Settling a problem posed by them, for a -vertex tree , we construct -vertex connected graphs that are -free with at least edges, showing that the additional connectivity condition can reduce the maximum size by at most a factor of 2. Furthermore, we show that this is optimal: there is a family of -vertex brooms such that the maximum size of an -vertex connected -free graph is at most .

中文翻译:

连通性如何影响树的极值数量

Erdős-Sós 猜想指出,没有给定顶点树的顶点图中的最大边数最多为 。尽管人们对此很感兴趣,但这个猜想仍然悬而未决。最近,Caro、Patkós 和 Tuza 考虑了连接的主机图的这个问题。解决他们提出的问题,对于 - 顶点树 ,我们构造至少具有边的 - 自由的 - 顶点连通图,表明附加连通性条件最多可以将最大尺寸减少 2 倍。此外,我们表明这是最优的:存在一系列 - 顶点扫帚,使得 - 顶点无连通图的最大尺寸至多为 。
更新日期:2024-02-19
down
wechat
bug