当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Lithium-Ion-Sieve-Embedded Hybrid Membranes for Anion-Exchange- and Cation-Concentration-Driven Li/Mg Separation
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-02-21 , DOI: 10.1021/acsami.3c19100 Guozhen Luo 1 , Yixuan Wu 1 , Xianjie Zeng 1 , Weishan Zhou 1 , Ping Wang 1 , Wen Zhang 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-02-21 , DOI: 10.1021/acsami.3c19100 Guozhen Luo 1 , Yixuan Wu 1 , Xianjie Zeng 1 , Weishan Zhou 1 , Ping Wang 1 , Wen Zhang 1
Affiliation
There is an urgent need to develop efficient and environmentally friendly technologies for separating Li+ from brines containing abundant Mg2+ to meet the growing demand for lithium resources. In this work, we prepared hybrid membranes by integrating hydrogen manganese oxide (HMO), a lithium-ion sieve, as a filler into anion-exchange membranes (AEMs), the quaternary ammonium-functionalized poly(2,6-dimethyl-1,4-phenylene oxide) (QPPO) and poly(m-terphenyl piperidinium) (m-PTP). Cations are transported by electrostatic attraction originating from anions and the concentration difference across membranes. Because of the effects of electrostatic repulsion of the fixed cationic groups and steric resistance in AEMs, Li+ with less charge and smaller radius will preferentially pass through the membrane. In addition, the presence of HMO provides an additional fast transport channel for Li+, resulting in an enhanced Li+/Mg2+ separation performance. The results show that 20%HMO@m-PTP exhibits high Li+ flux (0.48 mol/m2·h) and Li+/Mg2+ selectivity (βLi+/Mg2+ = 14.1). Molecular dynamics simulations show that m-PTP has more free volume than QPPO, which is beneficial for rapid cation transport. Spectral analysis confirms the insertion and sieving of Li+ in HMO. This work illustrates the great potential of anion-exchange- and cation-concentration-driven hybrid membranes based on lithium-ion sieves for low-energy and efficient Li+ extraction processes.
中文翻译:
锂离子筛包埋杂化膜,用于阴离子交换和阳离子浓度驱动的 Li/mg 分离
迫切需要开发高效、环保的技术,从含有丰富 Mg2+ 的盐水中分离 Li+,以满足对锂资源日益增长的需求。在这项工作中,我们通过将锂离子筛锰酸氢 (HMO) 作为填充剂集成到阴离子交换膜 (AEM) 中,制备了季铵官能化聚(2,6-二甲基-1,4-苯基氧化物) (QPPO) 和聚(间三联苯哌啶) (m-PTP)。阳离子通过源自阴离子的静电吸引和跨膜的浓度差进行运输。由于 AEM 中固定阳离子基团的静电排斥和空间阻力的影响,电荷较少且半径较小的 Li+ 将优先穿过膜。此外,HMO 的存在为 Li+ 提供了额外的快速传输通道,从而提高了 Li+/Mg2+ 分离性能。结果表明,20%HMO@m-PTP 表现出高 Li+ 通量 (0.48 mol/m2·h) 和 Li+/Mg2+ 选择性 (βLi+/Mg2+ = 14.1)。分子动力学模拟表明,m-PTP 比 QPPO 具有更大的自由体积,有利于快速阳离子传输。光谱分析证实了 Li+ 在 HMO 中的插入和筛分。这项工作说明了基于锂离子筛的阴离子交换和阳离子浓缩驱动杂化膜在低能耗和高效 Li+ 提取工艺中的巨大潜力。
更新日期:2024-02-21
中文翻译:
锂离子筛包埋杂化膜,用于阴离子交换和阳离子浓度驱动的 Li/mg 分离
迫切需要开发高效、环保的技术,从含有丰富 Mg2+ 的盐水中分离 Li+,以满足对锂资源日益增长的需求。在这项工作中,我们通过将锂离子筛锰酸氢 (HMO) 作为填充剂集成到阴离子交换膜 (AEM) 中,制备了季铵官能化聚(2,6-二甲基-1,4-苯基氧化物) (QPPO) 和聚(间三联苯哌啶) (m-PTP)。阳离子通过源自阴离子的静电吸引和跨膜的浓度差进行运输。由于 AEM 中固定阳离子基团的静电排斥和空间阻力的影响,电荷较少且半径较小的 Li+ 将优先穿过膜。此外,HMO 的存在为 Li+ 提供了额外的快速传输通道,从而提高了 Li+/Mg2+ 分离性能。结果表明,20%HMO@m-PTP 表现出高 Li+ 通量 (0.48 mol/m2·h) 和 Li+/Mg2+ 选择性 (βLi+/Mg2+ = 14.1)。分子动力学模拟表明,m-PTP 比 QPPO 具有更大的自由体积,有利于快速阳离子传输。光谱分析证实了 Li+ 在 HMO 中的插入和筛分。这项工作说明了基于锂离子筛的阴离子交换和阳离子浓缩驱动杂化膜在低能耗和高效 Li+ 提取工艺中的巨大潜力。