当前位置:
X-MOL 学术
›
ACS Appl. Mater. Interfaces
›
论文详情
Our official English website, www.x-mol.net, welcomes your
feedback! (Note: you will need to create a separate account there.)
Revealing Surface/Interface Chemistry of the Ordered Aramid Nanofiber/MXene Structure for Infrared Thermal Camouflage and Electromagnetic Interference Shielding
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-02-20 , DOI: 10.1021/acsami.3c19120
Wanbin Dang 1 , Wei Guo 1 , Ruidong Cheng 1 , Qiuyu Zhang 1
ACS Applied Materials & Interfaces ( IF 8.3 ) Pub Date : 2024-02-20 , DOI: 10.1021/acsami.3c19120
Wanbin Dang 1 , Wei Guo 1 , Ruidong Cheng 1 , Qiuyu Zhang 1
Affiliation
![]() |
The past decade has witnessed the advances of infrared (IR) thermal camouflage materials, but challenges remain in breaking the trade-off nature between emissivity and mechanical properties. In response, we identify the key role of a moderate reprotonation rate in the aramid nanofiber (ANF)/MXene film toward a surface-to-bulk alignment. Theoretical simulation demonstrates that the ordered ANF/MXene surface eliminates the local high electric field by field confinement and localization, responsible for the low IR emissivity. By scrutinizing the surface/interface chemistry, the processing optimization is achieved to develop an ordered and densely stacked ANF/MXene film, which features a low emissivity of 16%, accounting for sound IR thermal camouflage performances including a wide camouflage temperature range of 50–200 °C, a large reduction in radiation temperature from 200.5 to 63.6 °C, and long-term stability. This design also enables good mechanical performance such as a tensile strength of 190.8 MPa, a toughness of 12.1 MJ m–3, and a modulus of 7.9 GPa, responsible for better thermal camouflage applications. The tailor-made ANF/MXene film further attains an electromagnetic interference (EMI) shielding effectiveness (40.4 dB) in the X-band, manifesting its promise for IR stealth compatible EMI shielding applications. This work will shed light on the dynamic topology reconstruction of camouflage materials for boosting thermal management technology.
中文翻译:
揭示用于红外热伪装和电磁干扰屏蔽的有序芳纶纳米纤维/MXene结构的表面/界面化学
过去十年见证了红外(IR)热伪装材料的进步,但在打破发射率和机械性能之间的平衡方面仍然存在挑战。作为回应,我们确定了芳纶纳米纤维 (ANF)/MXene 薄膜中适度的重质子化率对于表面与本体排列的关键作用。理论模拟表明,有序的 ANF/MXene 表面通过场限制和局域化消除了局部高电场,从而导致了低红外发射率。通过仔细研究表面/界面化学,实现了加工优化,开发了一种有序且密集堆叠的 ANF/MXene 薄膜,其发射率低至 16%,具有良好的红外热伪装性能,包括 50–50 的宽伪装温度范围。 200℃,辐射温度由200.5℃大幅降低至63.6℃,且长期稳定。这种设计还具有良好的机械性能,例如 190.8 MPa 的拉伸强度、12.1 MJ m –3的韧性和 7.9 GPa 的模量,有助于更好的热伪装应用。定制的 ANF/MXene 薄膜进一步实现了 X 频段的电磁干扰 (EMI) 屏蔽效能 (40.4 dB),体现了其对红外隐形兼容 EMI 屏蔽应用的承诺。这项工作将揭示伪装材料的动态拓扑重建,以促进热管理技术。
更新日期:2024-02-20
中文翻译:

揭示用于红外热伪装和电磁干扰屏蔽的有序芳纶纳米纤维/MXene结构的表面/界面化学
过去十年见证了红外(IR)热伪装材料的进步,但在打破发射率和机械性能之间的平衡方面仍然存在挑战。作为回应,我们确定了芳纶纳米纤维 (ANF)/MXene 薄膜中适度的重质子化率对于表面与本体排列的关键作用。理论模拟表明,有序的 ANF/MXene 表面通过场限制和局域化消除了局部高电场,从而导致了低红外发射率。通过仔细研究表面/界面化学,实现了加工优化,开发了一种有序且密集堆叠的 ANF/MXene 薄膜,其发射率低至 16%,具有良好的红外热伪装性能,包括 50–50 的宽伪装温度范围。 200℃,辐射温度由200.5℃大幅降低至63.6℃,且长期稳定。这种设计还具有良好的机械性能,例如 190.8 MPa 的拉伸强度、12.1 MJ m –3的韧性和 7.9 GPa 的模量,有助于更好的热伪装应用。定制的 ANF/MXene 薄膜进一步实现了 X 频段的电磁干扰 (EMI) 屏蔽效能 (40.4 dB),体现了其对红外隐形兼容 EMI 屏蔽应用的承诺。这项工作将揭示伪装材料的动态拓扑重建,以促进热管理技术。